Чем валентность отличается от степени окисления. Электроотрицательность, степень окисления и валентность химических элементов Связь степени окисления и валентность атома


Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент

Степень окисления практически во всех соединениях

Исключения

водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:
кислород O -2 Пероксиды водорода и металлов:

Фторид кислорода —

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = № группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна -2 (кроме пероксидов и фторида кислорода OF 2). Расставим известные степени окисления:

Обозначим степень окисления серы как x :

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

Т.е. мы получили следующее уравнение:

Решим его:

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH 4 + (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH 4 + , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH 4 + и анионами Cr 2 O 7 2- .

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

Решая которые, находим x и y :

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать .

Валентность

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов

2) неподеленных электронных пар на орбиталях валентных уровней

3) пустых электронных орбиталей валентного уровня

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных () орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH 3), азотистой кислоты (HNO 2), треххлористого азота (NCl 3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но также и тогда, когда один атом, имеющий неподеленную пару электронов — донор() предоставляет ее другому атому с вакантной () орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d -подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO 3 или оксида азота N 2 O 5 ? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованная π -связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O 3 , бензола C 6 H 6 и т.д.

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d -подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s -орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d -подуровня, распаривание электронов s и p- орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода H 2 S.

Как мы видим, у атома серы на внешнем уровне появляется d -подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p -подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO 2 , SF 4 , SOCl 2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s -подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO 3 , H 2 SO 4 , SO 2 Cl 2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Электроотрицательностью называется свойство химического элемента притягивать к своему атому электроны от атомов других элементов, с которыми данный элемент образует химическую связь в соединениях.

При образовании химической связи между атомами разных элементов общее электронное облако смещается к более электроотрицательному атому, из-за чего связь становится ковалентно-полярной, а при большой разности электроотрицательностей – ионной.

Электроотрицательность учитывается при написании химических формул: в бинарных соединениях сзади записывается символ наиболее электроотрицательного элемента.

Электроотрицательность возрастает в направлении слева направо для элементов каждого периода и уменьшается в направлении сверху вниз для элементов одной и той же группы ПС.

Валентностью элемента называется свойство его атомов соединяться с определенным числом других атомов.

Различают стехиометрическую, электронную валентность и координационное число. Мы рассмотрим только стехиометрическую валентность.

Стехиометрическая валентность показывает, сколько атомов другого элемента присоединяет атом данного элемента. За единицу валентности принята валентность водорода, т.к. водород всегда одновалентен. Например, в соединениях HCl, H 2 O, NH 3 (правильное написание аммиака Н 3 N уже используется в современных пособиях), СН 4 хлор одновалентен, кислород двухвалентен, азот трехвалентен и углерод четырехвалентен.

Стехиометрическая валентность кислорода обычно равна 2. Так как почти все элементы образуют соединения с кислородом, то удобно его использовать в качестве эталона для определения валентности другого элемента. Например, в соединениях Na 2 O, CoO, Fe 2 O 3 , SO 3 натрий одновалентен, кобальт двухвалентен, железо трехвалентно, сера шестивалентна.

В окислительно-восстановительных реакциях нам важно будет определять степени окисления элементов.

Степенью окисления элемента в веществе называется его стехиометрическая валентность, взятая со знаком плюс или минус.

Химические элементы подразделяются на элементы постоянной валентности элементы переменной валентности.

1.3.3. Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения.

В зависимости от того, в каком состоянии соединения находятся в природе, они делятся на молекулярные и немолекулярные. В молекулярных веществах мельчайшими структурными частицами являются молекулы. Эти вещества имеют молекулярную кристаллическую решетку. В немолекулярных веществах мельчайшими структурными частицами являются атомы или ионы. Кристаллическая решетка у них атомная, ионная или металлическая.

Тип кристаллической решетки во многом определяет свойства веществ. Например, металлы, имеющие металлический тип кристаллической решетки , отличаются от всех остальных элементов высокой пластичностью, электро- и теплопроводностью . Эти свойства, а также и многие другие – ковкость, металлический блеск и т.п. обусловлены особым видом связи между атомами металла -- металлической связью. Необходимо отметить, что свойства, присущие металлам, проявляются только в конденсированном состоянии. Например, серебро в газообразном состоянии не обладает физическими свойствами металлов.

Особый тип связи в металлах – металлическая – обусловлен дефицитом валентных электронов, поэтому они общие для всей структуры металла. Наиболее простая модель строения металлов предполагала, что кристаллическая решетка металлов состоит из положительных ионов, окруженных свободными электронами, движение электронов происходит хаотически, подобно молекулам газа. Однако такая модель, качественно объясняя многие свойства металлов, при количественной проверке оказывается недостаточной. Дальнейшая разработка теории металлического состояния привела к созданию зонной теории металлов , которая основывается на представлениях квантовой механики.

В узлах кристаллической решетки находятся катионы и атомы металла, а электроны свободно перемещаются по кристаллической решетке .

Характерным механическим свойством металлов является пластичность , обусловленная особенностями внутреннего строения их кристаллов. Под пластичностью понимают способность тел под действием внешних сил подвергаться деформации, которая остается и после прекращения внешнего воздействия. Это свойство металлов позволяет придавать им различную форму при ковке, прокатывать металл в листы или вытягивать в проволоку.

Пластичность металлов обусловлена тем, что при внешнем воздействии слои ионов, образующих кристаллическую решетку, сдвигаются относительно друг друга без разрыва. Это происходит в результате того, что переместившиеся электроны благодаря свободному перераспределению продолжают осуществлять связь межу ионными слоями. При механическом воздействии на твердое вещество с атомной решеткой смещаются отдельные ее слои и сцепление между ними нарушается из-за разрыва ковалентных связей.

ионы , то эти вещества образуют ионный тип кристаллической решетки .


Это соли, а также оксиды и гидроксиды типичных металлов. Это твердые, хрупкие вещества, но основное их качество: растворы и расплавы этих соединений проводят электрический ток .

Если в узлах кристаллической решетки находятся атомы , то эти вещества образуют атомный тип кристаллической решетки (алмаз, бор, кремний оксиды алюминия и кремния). По свойствам очень твердые и тугоплавкие, нерастворимы в воде.

Если в узлах кристаллической решетки находятся молекулы , то эти вещества образуют (при обычных условиях газы и жидкости: О 2 , HCl; I 2 органические вещества).

Интересно отметить металл галлий, который плавится при температуре 30 о С. Эта его аномалия объясняется тем, что в узлах кристаллической решетки находятся молекулы Ga 2 и его свойства в чем становятся схожи с веществами, имеющие молекулярную кристаллическую решетку.

Пример. Немолекулярное строение имеют все неметаллы группы:

1) углерод, бор, кремний; 2) фтор, бром, иод;

3) кислород, сера, азот; 4) хлор, фосфор, селен.

В немолекулярных веществах мельчайшими структурными частицами являются атомы или ионы. Кристаллическая решетка у них атомная, ионная или металлическая

При решении этого вопроса проще идти от противного. Если в узлах кристаллической решетки находятся молекулы , то эти вещества образуют молекулярный тип кристаллической решетки (при обычных условиях газы и жидкости: О 2 , HCl; также I 2, ромбическая сера S 8 , белый фосфор Р 4 , органические вещества). По свойствам это непрочные легкоплавкие соединения.

Во втором ответе есть газ фтор, в третьем – газы кислород, азот, в четвертом – газ хлор. Значит, эти вещества имеют молекулярную кристаллическую решетку и молекулярное строение.

В первом ответе все вещества – твердые соединения при обычных условиях и образуют атомную решетку, значит, имеют немолекулярное строение.

Правильный ответ: 1) углерод, бор, кремний

Валентность и степень окисления – понятия, часто применяемые в неорганической химии. Во многих химических соединениях значение валентности и степень окисления элемента совпадают, именно по этой причине у школьников и студентов часто возникает путаница. У этих понятий действительно есть кое-что общее, но отличия более существенны. Чтобы понять, чем же отличаются эти два понятия, стоит узнать о них больше.

Сведения о степени окисления

Степень окисления – вспомогательная величина, приписываемая атому химического элемента или группе атомов, которая показывает, каким образом распределены общие пары электронов между взаимодействующими элементами.

Это вспомогательная величина, не имеющая физического смысла как такового. Ее суть достаточно просто объяснить с помощью примеров:

Молекула пищевой соли NaCl состоит из двух атомов – атома хлора и атома натрия. Связь между этими атомами ионная. У натрия на валентном уровне 1 электрон, значит у него с атомом хлора одна общая электронная пара. Из этих двух элементов хлор более электроотрицателен (обладает свойством смешать к себе электронные пары), то единственная общая пара электронов сместится к нему. В соединении элемент с более высокой электротрицательностью имеет отрицательную степень окисления, менее электроотрицательный, соответственно, положительную, а ее значение равно количеству общих пар электронов. Для рассматриваемой молекулы NaCl степени окисления натрия и хлора будут выглядеть так:

Хлор, со смещенной к нему электронной парой, теперь рассматривают как анион, то есть атом, присоединивший к себе дополнительный электрон, а натрий – как катион, то есть атом, отдавший электрон. Но при записи степени окисления на первом месте идет знак, а на втором числовое значение, а при записи ионного заряда – наоборот.

Степень окисления можно определить как число электронов, которых положительному иону не хватает до электронейтрального атома, или которые нужно забрать у отрицательного иона, чтобы окислить до атома. На данном примере очевидно, что положительному иону натрия за счет смещения электронной пары не хватает электрона, а у иона хлора один электрон лишний.

Степень окисления простого (чистого) вещества, не зависимо от его физических и химических свойств, равна нулю. Молекула О 2 , например, состоит из двух атомов кислорода. У них одинаковые значения электроотрицательности, потому общие электроны не смещаются ни к одному из них. Значит, электронная пара находится строго между атомами, потому степень окисления будет нулевой.

Для некоторых молекул бывает сложно определить, куда смещаются электроны, особенно если элементов в ней три или больше. Чтобы высчитать степени окисления в таких молекулах, нужно воспользоваться несколькими простыми правилами:

  1. Атом водорода почти всегда имеет постоянную степень окисления +1..
  2. Для кислорода этот показатель равен -2. Исключение из этого правила составляют только оксиды фтора

ОF 2 и О 2 F 2 ,

Так как фтор – элемент с наивысшей электроотрицательностью, потому он всегда смещает к себе взаимодействующие электроны. Согласно международным правилам, элемент с меньшим значением электроотрицаельности записывается первым, потому в этих оксидах кислород на первом месте.

  • Если суммировать все степени окисления в молекуле, получится ноль.
  • Для атомов металлов характерна положительная степень окисления.

При вычислении степеней окисления нужно помнить, что наибольшая степень окисления элемента равна номеру его группы, а минимальная — номер группы минус 8. Для хлора максимальное возможное значение степени окисления +7, потому что он в 7-ой группе, а минимальная 7-8=-1.

Общие сведения о валентности

Валентность – число ковалентных связей, которые может образовывать элемент в разных соединениях.

В отличии от степени окисления, понятие валентности есть реальный физический смысл.

Самый высокий показатель валентности равен номеру группы в таблице Менделеева. Сера S расположена в 6-ой группе, то есть ее максимальная валентность 6. Но она может быть также 2 (H 2 S) или 4 (SO 2).

Почти для всех элементов характерна переменная валентность. Однако есть атомы, для которых эта величина постоянная. К ним относятся щелочные металлы, серебро, водород (их валентность всегда равна 1), цинк (валентность всегда 2), лантан (валентность равна 3).

Что же общего у валентности и степени окисления

  1. Для обозначения и той, и другой величины используют положительные целые числа, которые пишутся над латинским обозначением элемента.
  2. Наивысшая валентность, как и наибольшая степень окисления, совпадает с номером группы элемента.
  3. Степень окисления какого-либо элемента в сложном соединении совпадает с числовым значением одного из показателей валентности. Например, хлор, находясь в 7-ой группе, может иметь валентность 1, 3, 4, 5, 6, или 7, значит возможные степени окисления ±1, +3,+4,+5,+6,+7.

Основные отличия между этими понятиями

  1. У понятия «валентность» есть физический смысл, а степень окисления – вспомогательный термин, не имеющий реального физического смысла.
  2. Степень окисления может быть нулевой, больше или меньше нуля. Валентность же строго больше нуля.
  3. Валентность отображает число ковалентных связей, а степень окисления – распределение электронов в соединении.

Учимся определять валентность и степень окисления.

Практика показывает, что многие обучающиеся испытывают затруднения при определении валентности и степени окисления. Пособие направлено на овладение основополагающими химическими понятиями валентность и степень окисления,

формирование умения давать количественные оценки и проводить расчеты валентности и степени окисления по химическим формулам в неорганических и органических соединениях, а также способствует подготовке студентов для сдачи ЕГЭ.

Пособие направлено на формирование навыков самостоятельной работы с учебным материалом, осуществления поиска и использования информации, формирование и развитие творческого потенциала, повышение интереса к дисциплине.

Валентность и степень окисления.

Правила определения степеней окисления элементов

I . Валентность

Валентность – это способность атомов присоединять к себе определенное число других атомов.

Правила определения валентности
элементов в соединениях

2) Атом металла стоит в формуле на первое место.

2) В формулах соединений атом неметалла, проявляющий низшую валентность, всегда стоит на втором месте, а название такого соединения оканчивается на «ид».

Например, СаО – оксид кальция, NaCl – хлорид натрия, PbS – сульфид свинца.

Теперь вы сами можете написать формулы любых соединений металлов с неметаллами.

3) Атом металла ставится в формуле на первое место.

II . Степень окисления

Степень окисления – это условный заряд, который получает атом в результате полной отдачи (принятия) электронов, исходя из условия, что все связи в соединении ионные.

Рассмотрим строение атомов фтора и натрия:

- Что можно сказать о завершённости внешнего уровня атомов фтора и натрия?

- Какому атому легче принять, а какому легче отдать валентные электроны с целью завершения внешнего уровня?

Оба атома имеют незавершённый внешний уровень?

Атому натрия легче отдавать электроны, фтору – принять электроны до завершения внешнего уровня.

F0 + 1ē → F-1 (нейтральный атом принимает один отрицательный электрон и приобретает степень окисления «-1», превращаясь в отрицательно заряженный ион - анион )

Na0 – 1ē → Na+1 (нейтральный атом отдаёт один отрицательный электрон и приобретает степень окисления «+1», превращаясь в положительно заряженный ион - катион )

Как определить степень окисления атома в ПСХЭ?

Правила определения степени окисления атома в ПСХЭ:

1. Водород обычно проявляет степень окисления (СО) +1 (исключение, соединения с металлами (гидриды) – у водорода СО равна (-1) Me+nHn-1)

2. Кислород обычно проявляет СО -2 (исключения: О+2F2, H2O2-1 – перекись водорода)

3. Металлы проявляют только + n положительную СО

4. Фтор проявляет всегда СО равную -1 (F-1)

5. Для элементов главных подгрупп :

Высшая СО (+) = номеру группыN группы

Низшая СО (-) = N группы –8

Правила определения степени окисления атома в соединении:

I. Степень окисления свободных атомов и атомов в молекулах простых веществ равнанулю - Na0, P40, O20

II. В сложном веществе алгебраическая сумма СО всех атомов с учётом их индексов равна нулю = 0 , а в сложном ионе его заряду.

Например, H +1 N +5 O 3 -2 : (+1)*1+(+5)*1+(-2)*3 = 0

[ S +6 O 4 -2 ]2- : (+6)*1+(-2)*4 = -2

Задание 1 – определите степени окисления всех атомов в формуле серной кислоты H2SO4?

1. Проставим известные степени окисления у водорода и кислорода, а СО серы примем за «х»

(+1)*1+(х)*1+(-2)*4=0

Х=6 или (+6), следовательно, у серы CО +6, т. е. S+6

Задание 2 – определите степени окисления всех атомов в формуле фосфорной кислоты H3PO4?

1. Проставим известные степени окисления у водорода и кислорода, а СО фосфора примем за «х»

2. Составим и решим уравнение, согласно правилу (II):

(+1)*3+(х)*1+(-2)*4=0

Х=5 или (+5), следовательно, у фосфора CО +5, т. е. P+5

Задание 3 – определите степени окисления всех атомов в формуле иона аммония (NH4)+?

1. Проставим известную степень окисления у водорода, а СО азота примем за «х»

2. Составим и решим уравнение, согласно правилу (II):

(х)*1+(+1)*4=+1

Х=-3, следовательно, у азота CО -3, т. е. N-3

Алгоритм составления формулы по степени окисления

Составление названий бинарных соединений

Сравним понятия «валентность» и «степень окисления»:


Запомни!

Валентность - - это способность атома образовывать определенное количество связей с другими атомами.

Правила определения валентности

1. В молекулах простых веществ: H2, F2, Cl2, Br2, I2 равна единице.

2. В молекулах простых веществ: O2, S8 равна двум.

3. В молекулах простых веществ: N2, P4 и CO - оксиде углерода (II) - равна трем.

4. В молекулах простых веществ, которые образует углерод (алмаз, графит), а также в органических соединениях, которые он образует, валентность углерода равна четырем.

5. В составе сложных веществ водород одновалентен, кислород, в основном, двухвалентен. Для определения валентности атомов других элементов в составе сложных веществ надо знать строение этих веществ.

Степень окисления – это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (с ионной и ковалентной полярной связью) состоят только из ионов.

Высшая степень окисления элемента равна номеру группы.

Исключения:

фтор высшая степень окисления ноль в простом веществе F20

кислород высшая степень окисления +2 во фториде кислорода О+2F2

Низшая степень окисления элемента равна восемь минус номер группы (по числу электронов, которые атом элемента может принять до завершенного восьми электронного уровня)

Правила определения степени окисления (далее обозначим: ст. ок.)

Общее правило: Сумма всех степеней окисления элементов в молекуле с учетом количества атомов равна нулю (Молекула электронейтральна.), в ионе - равна заряду иона.

I. Степень окисления простых веществ равна нулю: Са 0 , O2 0 , Cl2 0

II. ст. ок. в бинарных c оединениях:

Менее электроотрицательный элемент ставится на первое место. (Исключения: С-4Н4+ метан и N-3H3+аммиак)

Нужно помнить, что

Ст. ок. металла всегда положительна

Ст. ок. металлов I, II, III групп главных подгрупп постоянна и равна номеру группы

Для остальных ст. ок. вычисляется по общему правилу.

Более электроотрицательный элемент ставится на второе место, его ст. ок. равна восемь минус номер группы (по числу электронов, которые он принимает до завершенного восьми электронного уровня).

Исключения: пероксиды, например, Н2+1О2-1, Ba+2O2-1 и др. ; карбиды металлов I и II групп Ag2+1C2-1,Ca+2C2-1 и др. (В школьном курсе встречается соединение FeS2 - пирит. Это дисульфид железа. Степень окисления серы в нем (-1) Fe+2S2-1). Это происходит потому, что в этих соединениях есть связи между одинаковыми атомами -О-О-, - S-S-, тройная связь в карбидах между атомами углерода. Степень окисления и валентность элементов в этих соединениях не совпадают: у углерода валентность IV, у кислорода и серы II.

III. Степень окисления в основаниях Ме + n (ОН) n равна количеству гидроксогрупп.

1. в гидроксогруппе ст. ок. кислорода -2, водорода +1, заряд гидроксогруппы 1-

2. ст. ок. металла равна количеству гидроксогрупп

IV. Степень окисления в кислотах:

1. ст. ок. водорода +1, кислорода -2

2. ст. ок. центрального атома вычисляется по общему правилу путем решения простого уравнения

Например, Н3+1РхО4-2

3∙(+1) + х + 4∙(-2) = 0

3 + х – 8 = 0

х = +5 (не забудьте знак +)

Можно запомнить, что у кислот с высшей степени окисления центрального элемента, соответствующего номеру группы, название будет заканчиваться на –ная:

Н2СО3 угольная Н2С+4О3

Н2SiО3 кремниевая (искл.) Н2Si+4О3

НNО3 азотная НN+5О3

Н3PО4 фосфорная Н3P+5О4

Н2SО4 серная Н2S+6О4

НСlО4 хлорная НCl+7О4

НMnО4 марганцовая НMn+7О4

Останется запомнить:

НNО2 азотистая НN+3О2

Н2SО3 сернистая Н2S+4О3

НСlО3 хлорноватая НCl+5О3

НСlО2 хлористая НCl+3О2

НСlОхлорноватистая НCl+1О

V. Степень окисления в солях

у центрального атома такая же, как в кислотном остатке. Достаточно помнить или определить ст. ок. элемента в кислоте.

VI. Степень окисления элемента в сложном ионе равна заряду иона.

Например, NH4+Cl- : записываем ион NхН4+1

х + 4∙(+1) = +1

ст. ок. азота -3

Например, определить ст. ок. элементов в гексацианоферрате(III) калия К3

У калия +1: К3+1, отсюда заряд иона 3-

У железа +3 (указано в названии) 3-, отсюда (CN)66-

У одной группы (CN)-

Более электроотрицательный азот: у него -3, отсюда (CхN-3)-

ст. ок. углерода +2

VII. Степень окисления углерода в органических соединениях разнообразна и вычисляется, исходя из учета того, что ст. ок. водорода равна +1, кислорода -2

Например, С3Н6

3∙х + 6∙1 = 0

ст. ок. углерода -2 (при этом валентность углерода равна IV)

Задание. Определить степень окисления и валентность фосфора в фосфорноватистой кислоте H3PO2.

Вычислим степень окисления фосфора.

Обозначим её за х. Подставим степень окисления водорода +1, а кислорода -2, умножив на соответствующее количество атомов: (+1) ∙ 3 + х + (-2) ∙ 2 = 0, отсюда х = +1.

Определим валентность фосфора в этой кислоте.

Известно, что это - одноосновная кислота, поэтому только один атом водорода связан с атомом кислорода. Учитывая, что водород в соединениях одновалентен, а кислород - двухвалентен, получаем структурную формулу, из которой видно, что фосфор в этом соединении имеет валентность пять.

Графический метод определения степени окисления

в органических веществах

В органических веществах можно определять степени окисления элементов алгебраическим методом , при этом получается усредненное значение степени окисления . Этот метод наиболее применим в том случае, если все атомы углерода органического вещества по окончании реакции приобрели одинаковую степень окисления (реакции горения или полного окисления).

Рассмотрим такой случай:

Пример 1 . Обугливание дезоксирибозы серной концентрированной кислотой с дальнейшим окислением:

С5Н10О4 + H2SO4 ® CO2 + H2O + SO2

Найдём степень окисления углерода х в дезоксирибозе: 5х + 10 – 8 = 0; х = - 2/5

В электронном балансе учитываем все 5 атомов углерода:

Часть 1. Задание А5.

Проверяемые элементы: Электроотрицательность.Степень окисления и

валентность химических элементов.

Электроотрицательность -величина, характеризующая способность атома к поляризации ковалентных связей. Если в двухатомной молекуле А - В образующие связь электроны притягиваются к атому В сильнее, чем к атому А, то атом В считается более электроотрицательным, чем А.

Электроотрицательностью атома называется способность атома в молекуле (соединении) притягивать электроны, связывающие его с другими атомами.

Понятие электроотрицательности (ЭО) ввел Л. Полинг (США, 1932 г.). Количественная характеристика электроотрицательности атома весьма условна и не может быть выражена в единицах каких-либо физических величин, поэтому для количественного определения ЭО предложено несколько шкал. Наибольшее признание и распространение получила шкала относительных ЭО:

Значения электроотрицательности элементов по Полингу

Электpоoтрицательность χ (греч. хи) - способность атома удерживать внешние (валентные) электроны. Она определяется степенью притяжения этих электронов к положительно заряженному ядру.

Это свойство проявляется в химических связях как смещение электронов связи в сторону более электроотрицательного атома.

Электpоотрицательность атомов, участвующих в образовании химической связи, – один из главных факторов, который определяет не только ТИП, но и СВОЙСТВА этой связи, и тем самым влияет на характер взаимодействия между атомами при протекании химической реакции.

В шкале относительных электроотрицательностей элементов Л. Полинга (составленной на основе энергий связей двухатомных молекул) металлы и элементы-органогены располагаются в следующий ряд:

Элeктроотрицательность элементов подчиняется периодическому закону: она растет слева направо в периодах и снизу вверх в главных подгруппах Периодической системы элементов Д.И. Менделеева.

Электроотрицательность не является абсолютной константой элемента. Она зависит от эффективного заряда ядра атома, который может изменяться под влиянием соседних атомов или групп атомов, типа атомных орбиталей и характера их гибридизации.

Степень окисления - это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что соединения состоят только из ионов.



Степени окисления могут иметь положительное, отрицательное или нулевое значение, причём знак ставится перед числом:-1, -2, +3, в отличии от заряда иона, где знак ставится после числа.

В молекулах алгебраическая сумма степеней окисления элементов с учётом числа их атомов равна 0.

Степени окисления металлов в соединениях всегда положительные,высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключая некоторые элементы:золото Au+3 (I группа), Cu+2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru.

Степени неметаллов могут быть как положительными так и отрицательными, в зависимости от того с каким атомом он соединён: если с атомом металла то всегда отрицательная, если с неметаллом-то может быть и +, и - (об этом вы узнаете при изучении ряда электроотрицательностей). Высшую отрицательную степень окисления неметаллов можно найти, вычтя из 8 номер группы, в которой находится данный элемент, высшая положительная равна числу электронов на внешнем слое (число электронов соответствует номеру группы).

Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.

Таблица, где указаны постоянные степени для наиболее часто используемых элементов:



Сте́пень окисле́ния (окислительное число, формальный заряд) - вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов.

Представления о степени окисления положены в основу классификации и номенклатуры неорганических соединений.

Степень окисления является сугубо условной величиной, не имеющей физического смысла, но характеризующей образование химической связи межатомарного взаимодействия в молекуле.

Валентность химических элементов- (от лат. valens - имеющий силу) - способность атомов химических элементов образовывать определённое число химических связей с атомами других элементов. В соединениях, образованных при помощи ионных связей, валентность атомов определяется числом присоединённых или отданных электронов. В соединениях с ковалентными связями валентность атомов определяется числом образовавшихся обобществленных электронных пар.

Постоянная валентность:

Запомнить:

Степенью окисления называют условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный характер.

1. Элемент в простом веществе имеет нулевую степень окисления. (Cu, H2)

2. Сумма степеней окисления всех атомов в молекуле вещества равна нулю.

3. Все металлы имеют положительную степень окисления.

4. Бор и кремний в соединениях имеют положительные степени окисления.

5. Водород имеет в соединениях степень окисления (+1).Исключая гидриды

(соединения водорода с металлами главной подгруппы первой-второй групп, степень окисления -1, например Na + H -)

6. Кислород имеет степень окисления (-2),за исключением соединения кислорода со фтором OF2, степень окисления кислорода (+2), степень окисления фтора (-1) . И в перекисях Н 2 О 2 - степень окисления кислорода (-1);

7. Фтор имеет степень окисления (-1).

Электроотрицательность-свойство атомов НеМе притягивать к себе общие электронные пары. У электроотрицательности, такая же зависимость, что и у Неметаллических свойств: по преиоду (слева-напрво) увеличивается, по группе (сверху) ослабевает.

Самый электроотрицательный элемент Фтор, затем Кислород, Азот…и т.д….

Алгоритм выполнения задания в демонстрационном варианте:

Задание:

Aтом хлора расположен в 7 группе, поэтому может иметь максимальную степень окисления +7.

Такую степень окисления атом хлора проявляет в веществе НClO4.

Проверим это: У двух химических элементов водорода и кислорода степени окисления постоянны и равны соответственно +1 и -2. Число степеней окисления у кислорода равна (-2)·4=(-8), у водорода (+1)·1=(+1). Число положительных степеней окисления равно числу отрицательных. Следовательно (-8)+(+1)=(-7). Значит у атома хрома число положительных степеней равно 7, записываем степени окисленя над элементами. Степень окисления хлора равна +7 в соединении НClO4.

Ответ: Вариант 4. Степень окисления хлора равна +7 в соединении НClO4.

Различные формулировки задания А5:

3.Степень окисления хлора в Ca(ClO 2) 2

1) 0 2) -3 3) +3 4) +5

4.Наименьшей электроотрицательностью обладает элемент

5.Наименьшую степень окисления марганец имеет в соединении

1)MnSO 4 2)MnO 2 3)K 2 MnO 4 4)Mn 2 O 3

6.Азот проявляет степень окисления +3 в каждом из двух соединений

1)N 2 O 3 NH 3 2)NH 4 Cl N 2 O 3)HNO 2 N 2 H 4 4)NaNO 2 N 2 O 3

7.Валентность элемента равна

1)числу образуемых им σ связей

2)числу образуемых им связей

3)числу образуемых им ковалентных связей

4)степени окисления с противоположным знаком

8.Свою максимальную степень окисления азот проявляет в соединении

1)NH 4 Cl 2)NO 2 3)NH 4 NO 3 4)NOF









2024 © voenkvm.ru.