Пептидная связь имеет строение. Пептидная связь. строение и биологические свойства пептидов. Образование пептидной связи


Пептидная связь по своей химической природе является ковалентной и придает высокую прочность первичной структуре белковой молекулы. Являясь повторяющимся элементом полипептидной цепи и имея специфические особенности структуры, пептидная связь влияет не только на форму первичной структуры, но и на высшие уровни организации полипептидной цепи.

Для пептидной (амидной) группы свойственна оригинальная структура.

Все четыре атома – N,C,OиCрасполагаются в одной плоскости, что отвечаетsp 2 -гибридизации атомов углерода и кислорода карбонильной группы. Неподеленная пара электронов атома азота вступает в сопряжение с-электронами двойной связи карбонильной группы. В результате этого связь С–Nв пептидах и белках сильно укорачивается, а двойная связь С=О удлиняется. С позиций электронного строения пептидная группа представляет собой трехцентровую р––сопряженную систему, электронная плотность в которой смещена в сторону более электроотрицательного атома кислорода. При этом возникают высокие электронодонорные (атом =О) и электроноакцепторные свойства (атом Н при азоте), которые резко увеличивают способность этих атомов к образованию водородной связи, за счет которой возникает важнейшее свойство белков – образовывать структуры бесконечно разнообразных форм:

Каждая пептидная группа может образовывать по две водородные связи с другими группами, в том числе и пептидными. Исключением являются пептидные группы, образованные с участием аминокислот пролина или гидроксипролина, которые способны образовывать только одну водородную связь. Пептидная цепь на участке, где находятся пролин или гидроксипролин, легко изгибается, так как не удерживается, как обычно, второй водородной связью.

В результате того, что пептидная связь может существовать в кето-енольной форме (наличие плоской сопряженной системы),

вращение вокруг С–N-связи является запретным и все атомы, входящие в пептидную группу, имеют транс-конфигурацию. Цис-конфигурация является энергетически менее выгодной и встречается лишь в некоторых циклических пептидах.

В составе полипептидной цепи жесткие структурные элементы (плоские пептидные группы) чередуются с относительно подвижными участками (–СНR), которые способны вращаться вокруг связей, хотя такое вращение может быть весьма ограничено вследствие затруднений в пространственном размещении боковых радикалов (R) аминокислотных остатков. Таким образом, электронное и пространственное строение пептидной группы влияет на укладку полипептидной цепи в пространстве и, прежде всего, предопределяет формирование вторичной структуры белка.

    1. Вторичная структура

Вторичная структура белков представляет собой способ укладки полипептидной цепи в упорядоченную форму за счет системы водородных связей, т.е. определяет пространственную ориентацию полипептидной цепи. Различают две формы вторичной структуры: спиральную (-спираль), возникающую в пределах одной полипептидной цепи, ислоисто-складчатую (-структура) – между смежными полипептидными цепями.

Хотя спиральная структура в полипептидных цепях белков обнаружена в виде отдельных участков, она придает молекуле белка достаточно высокую прочность, обуславливает в ней как ближний, так и дальний порядок сил, участвующих в создании водородных связей.

-Спираль учитывает все свойства пептидной связи, ее конфигурация имеет винтовую симметрию. Витки спирали регулярны; все аминокислотные остатки в остове спирали равнозначны независимо от строения их боковых радикалов, причем последние не участвуют в образовании -спирали. В одном витке-спирали находится 3,6 аминокислотных остатка. Спираль может быть описана последовательностью

с 13-ю атомами в кольце (R-остатки аминокислот), где О…Н – водородная связь.

Каждая пептидная группа образует водородную связь с четвертой от нее по счету пептидной группой.

-Спираль обеспечивает наименьшее напряжение связей, минимальные размеры незанятого пространства вблизи оси и минимальные размеры витка спирали. -Спираль впервые была обнаружена в кристаллическом гемоглобине, а позднее – почти во всех глобулярных белках.

Слоисто-складчатая структура (-структура) имеет слегка изогнутую конфигурацию у-углеродного атома полипептидной цепи и формируется с помощью межцепочечных водородных связей.

-Складчатые листы могут быть образованы параллельными (N-концы направлены в одну сторону) и антипараллельными (N-концы направлены в разные стороны) полипептидными цепями. Складчатые структуры были обнаружены во многих структурных белках (коллагене, кератине, фиброине шелка).

Совокупность -спиралей и-структур является важным критерием, по которому можно судить о степени упорядоченности структуры белковой молекулы, стабильности белков при действии физико-химических факторов сред.

На основании последних исследований глобулярных белков были установлены еще два уровня: сверхвторичная структура, характеризующая энергетически предпочтительные агрегаты вторичной структуры, идомены – части белковой глобулы, представляющие собой достаточно обособленные глобулярные области.

Сверхвторичная структура (суперспираль) – это ансамбли взаимодействующих между собой вторичных структур. Возникновение этих ансамблей указывает на то, что они предпочтительны с точки зрения либо кинетики процесса свертывания, либо выигрыша свободной энергии в уже свернутом белке. Суперспирализованная-спираль встречается в фибриллярных белках.

Под доменами принято понимать компактные автономные субобласти в составе белка, характеризующиеся минимальным отношением поверхности к объему, а также тем, что число функциональных связей в составе домена значительно превышает таковое по сравнению с соседними доменами. Как правило, домены выполняют определенные функции и поэтому их называютфункциональными доменами.

Cодержание:

Польза аминокислот при силовых тренировках. Четыре группы, отражающие формирование структуры молекулы белка.

Белок представляет собой полимерную молекулу, в которой есть группа мономеров (то есть мелких элементов) – аминокислот. От того, какие аминокислоты формируют состав белка, а также от их чередования, зависят свойства и действие последнего. Всего в организме человека можно найти двадцать аминокислот, которые в различных сочетаниях встречаются в различном по своей конструкции белке. Условно все компоненты белковой молекулы можно рассматривать в качестве букв алфавита, на которых зафиксирован определенный объем информации. Только слово может свидетельствовать о каком-либо предмете или действии, а набор аминокислот – о функции конкретного белка, его возможностях и эффективности работы.

О пользе

Об особенностях и преимуществах столь полезных элементов написано сотни статей и книг. Почему бы и нет, ведь они действительно формируют наш организм, являются составляющими элементами белка и помогают развиваться во всех отношениях. К основным свойствам можно отнести:

  • ускорение синтеза белка. Наличие в организме полного комплекса аминокислот способствует стимуляции выработки инсулина и активации mTor. Вместе эти механизмы способствуют запуску роста мышечной массы;
  • источник энергии. Такие компоненты проходят по другому пути метаболизма и по своей функции отличаются от углеводов. В итоге организм получает большие объемы энергии и заполняется аминокислотным пулом. Итог – мышцы растут намного быстрее;
  • подавление катаболических процессов. С их помощью можно навсегда забыть, что такое разрушение собственных мышц, ведь в организме всегда будет материал для построения новых белковых молекул;
  • снижение жира. Полезная функция – помощь в образовании лептина, который способствует максимально быстрому сжиганию жировых отложений. Все это позволяет добиться максимального эффекта.

К полезным действиям аминокислотных групп можно также отнести участие в обмене азота в организме, восстановление поврежденных тканевых участков, обеспечение метаболических процессов, полноценное восстановление мышц, снижение уровня сахара в крови. Кроме этого, к полезным действиям можно отнести стимуляцию гормона роста, повышение выносливости, обеспечение организма необходимым объемом энергии, нормализацию обменных процессов, стимуляцию иммунной системы, нормализацию пищеварительного процесса, защиту от радиации и так далее.

Структура

Химики выделяют четыре основные группы, которые отображают суть структурного формирования молекулы столь необходимого и важного для человеческого организма компонента. Таких группы всего четыре и у каждой из них есть свои особенности формирования – первичная, вторичная, третичная и четвертичная. Рассмотрим эти нюансы более подробно:


Вывод

Вот мы вкратце и рассмотрели, как аминокислоты формируют столь необходимый человеку элемент.

(1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки . Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.

Свойства пептидной связи

Как и в случае любых амидов, в пептидной связи за счет резонанса канонических структур связь C-N между углеродом карбонильной группы и атомом азота частично имеет характер двойной:

Это проявляется, в частности, в уменьшении её длины до 1,33 ангстрема :


Это обусловливает следующие свойства:

  • 4 атома связи (C, N, O и H) и 2 α-углерода находятся в одной плоскости. R-группы аминокислот и водороды при α-углеродах находятся вне этой плоскости.
  • H и O в пептидной связи, а также α-углероды двух аминокислот трансориентированы (транс-изомер более устойчив). В случае L-аминокислот, что имеет место во всех природных белках и пептидах, R-группы также трансориентированы.
  • Вращение вокруг связи C-N затруднено, возможно вращение вокруг С-С связи.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Пептидная связь" в других словарях:

    - (CO NH) химическая связь, соединяющая аминогруппу одной аминокислоты с карбоксильной группой другой в молекулах пептидов и белков … Большой Энциклопедический словарь

    пептидная связь - – амидная связь (NH CO), образующаяся между амино и карбоксильной группами аминокислот в результате реакции дегидратации … Краткий словарь биохимических терминов

    пептидная связь - Ковалентная связь между альфа аминогруппой одной аминокислоты и альфа карбоксильной группой другой аминокислоты Тематики биотехнологии EN peptide bond … Справочник технического переводчика

    Пептидная связь - * пептыдная сувязь * peptide bond ковалентная связь между двумя аминокислотами, возникающая в результате соединения α аминогруппы одной молекулы с α карбоксильной группой др. молекулы, с одновременным удалением воды … Генетика. Энциклопедический словарь

    ПЕПТИДНАЯ СВЯЗЬ - хим. Связь СО NH , характерная для аминокислот в молекулах белков и пептидов. П. с. встречается и в некоторых др. органических соединениях. При ее гидролизе образуются свободная карбоксильная группа и аминогруппа … Большая политехническая энциклопедия

    Вид амидной связи; возникает в результате взаимодействия а аминогруппы (NH2) одной аминокислоты с? карбоксильной группой (СООН) др. аминокислоты. Группа С(О) NH в белках и пептидах находится в состоянии кето енольной таутомерии (существование… … Биологический энциклопедический словарь

    - (СО NH), химическая связь, соединяющая аминогруппу одной аминокислоты с карбоксильной группой другой в молекулах пептидов и белков. * * * ПЕПТИДНАЯ СВЯЗЬ ПЕПТИДНАЯ СВЯЗЬ (CO NH), химическая связь, соединяющая аминогруппу одной аминокислоты… … Энциклопедический словарь

    Peptide bond пептидная связь. Pазновидность амидной связи, образуется между α карбоксильной и α аминогруппой двух аминокислот. (

α-Аминокислоты могут ковалентно связы-ваться друг с другом с помощью пептидных свя-зей . Карбоксильная группа одной аминокислоты ковалентно связывается с аминогруппой другой аминокислоты. При этом возникает R-CO-NH -R связь, называемая пептидной связью. При этом происходит отщепление мо-лекулы воды.

При помощи пептидных связей из аминокислот образуются белки и пептиды. Пептиды, содержащие до 10 аминокислот, называют олигопептиды . Час-то в названии таких молекул указывают количе-ство входящих в состав олигопептида аминокис-лот: трипептид, пентапептид, октапептид и т.д. Пептиды, содержащие более 10 аминокислот, называют «полипептиды », а полипептиды, состоя-щие из более чем 50 аминокислотных остатков, обычно называют белками. Мономеры аминокислот, входящих в состав бел-ков, называют «аминокислотные остатки». Амино-кислотный остаток, имеющий свободную амино-группу, называется N-концевым и пишется слева, а имеющий свободную C-карбоксильную груп-пу — С-концевым и пишется справа. Пептиды пи-шутся и читаются с N-конца.

Связь между α-углеродным атомом и α-аминогруппой или α-карбоксильной группой спо-собна к свободным вращениям (хотя ограниче-на размером и характером радикалов), что позволяет полипептидной цепи принимать раз-личные конфигурации.

Пептидные связи обычно расположены в транс-конфигурации, т.е. α-углеродные атомы располагаются по разные стороны от пептид-ной связи. В результате боковые радикалы ами-нокислот находятся на наиболее удалённом рас-стоянии друг от друга в пространстве. Пептидные связи очень прочны и являются ковалентными .

В организме человека вырабатывается мно-жество пептидов, участвующих в регуляции раз-личных биологических процессов и обладающих высокой физиологической активностью. Такими являются целый ряд гормонов - окситоцин (9 аминокислотных остатков), вазопрессин (9), брадикинин (9) регулирующий тонус сосудов, тиреолиберин (3), антибиотики - грамицидин, пептиды, обладающие обезболивающим дей-ствием (энкефалины (5) и эндорфины и другие опиоидные пептиды). Обезболивающий эф-фект этих пептидов в сотни раз превосходит анальгезирующий эффект морфина;

Окситоцин выделяется в кровь во время корм-ления ребёнка, вызывает сокращение миоэпителиальных клеток протоков молочных желёз и стимулирует выделение молока. Кроме того, окситоцин влияет на гладкую мускулатуру мат-ки во время родов, вызывая её сокращение.

В отличие от окситоцина, основное физио-логическое действие вазопрессина — увеличе-ние реабсорбции воды в почках при уменьше-нии АД или объёма крови (поэтому другое название этого гормона — антидиуретический). Кроме того, вазопрессин вызывает сужение сосудов .


Различают 4 уровня структурной организации белков, называемых первичной, вторичной, третичной и четвертич-ной структурами. Существуют общие правила, по которым идёт формирование про-странственных структур белков.

Первичная структура белка - это ковалентная структура остова полипептидной цепи - линейная последовательность аминокислотных остатков, соединенных друг с другом пептидными связями. Первичная структура каждого индивидуально-го белка закодирована в участке ДНК, называе-мом геном. В процессе синтеза белка информа-ция, находящаяся в гене, сначала переписывается на мРНК, а затем, используя мРНК в качестве матрицы, на рибосоме происходит сборка пер-вичной структуры белка. Каждый из 50 000 индивидуальных белков организма человека имеет уникальную для дан-ного белка первичную структуру.

Инсулин является первым белком, первичная структура которого была расшифрована. Инсулин — белковый гормон; содержит 51 аминокислоту, состоит из двух полипептидных цепей (цепь А содержит 21 аминокислоту, цепь В — 30 аминокислот). Инсулин синтезируется в β-клетках поджелудочной железы и секретируется в кровь в ответ на повышение концентра-ции глюкозы в крови. В структуре инсулина имеются 2 дисульфидные связи, соединяющие 2 полипептидные цепи А и В, и 1 дисульфидная связь внутри цепи А

Вторичная структура белков- это конформация полипептидной цепи, т.е. способ скручивания цепи в пространстве за счет водородных связей между группами -NH и -СО. Существует два основных способа укладки цепи — α-спираль и β-структура .

α -Спираль

Вданном типе структуры пептидный остов закручивается в виде спирали за счёт образова-ния водородных связей между атомами кисло-рода карбонильных групп и атомами водорода ами-ногрупп, входящих в состав пептидных групп через 4 аминокислотных остатка. Водородные связи ориентированы вдоль оси спирали. На один виток α-спирали приходится 3,6 аминокислотных остатка.

В образовании водородных связей участвуют практически все атомы кислорода и водорода пеп-тидных групп. В результате α-спираль «стягива-ется» множеством водородных связей. Несмотря на то, что данные связи относят к разряду сла-бых, их количество обеспечивает максимально возможную стабильность α-спирали. Так как все гидрофильные группы пептидного остова обыч-но участвуют в образовании водородных связей, гидрофильность (т.е. способность образовывать водородные связи с водой) α-спиралей уменьша-ется, а их гидрофобность увеличивается.

α-Спиральная структура — наиболее устой-чивая конформация пептидного остова, отве-чающая минимуму свободной энергии. В резуль-тате образования α-спиралей полипептидная цепь укорачивается, но если создать условия для разрыва водородных связей, полипептидная цепь вновь удлинится.

Радикалы аминокислот находятся на наружной стороне α -спирали и направлены от пептидного остова в стороны. Они не участвуют в образовании водородных связей, характерных для вторич-ной структуры, но некоторые из них могут нару-шать формирование α-спирали.

К ним относятся:

Пролин. Его атом азота входит в состав жёс-ткого кольца, что исключает возможность вращения вокруг -N-CH- связи. Кроме того, у атома азота пролина, образующего пептид-ную связь с другой аминокислотой, нет ато-ма водорода. В результате пролин не спосо-бен образовать водородную связь в данном месте пептидного остова, и α-спиральная структура нарушается. Обычно в этом месте пептидной цепи возникает петля или изгиб;

Участки, где последовательно расположены несколько одинаково заряженных радика-лов, между которыми возникают электро-статические силы отталкивания;

Участки с близко расположенными объём-ными радикалами, механически нарушаю-щими формирование а-спирали, например метионин, триптофан.

β -Структура

β-Структура формируется за счёт образования множества водородных связей между атомами пептидных групп линейных областей одной полипептидной цепи, делающей изгибы, или между раз-ными полипептидными цепями , β-Структура образует фигуру, подобную листу, сложенному «гармошкой», — β-складчатый слой.

Складчатый слой фиброина шелка: зигзагообразные антипараллельные складки.

Когда водородные связи образуются между атомами пептидного остова различных полипеп-тидных цепей, их называют межцепочечными связями. Водородные связи, возникающие меж-ду линейными участками внутри одной полипеп-тидной цепи, называют внутрицепочечными. В β-структурах водородные связи расположены перпендикулярно полипептидной цепи.

Третичная структура белков — трёхмерная про-странственная структура, образующаяся за счёт взаимодействий между радикалами аминокислот, которые могут располагаться на значительном расстоянии друг от друга в полипептидной цепи.

Третичная структура свернутой полипептиднойцепи стабилизируется рядом взаимодействий между радикалами аминокислот: это гидрофобные взаимодействия, электростатическое притяжение, водородные связи, а также дисульфидные -S-S- связи.

Гидрофильные радикалы аминокислот стре-мятся образовать водородные связи с водой и поэтому в основном располагаются на поверх-ности белковой молекулы.

Все гидрофильные группы радикалов амино-кислот, оказавшиеся внутри гидрофобного ядра, взаимодействуют друг с другом с помощью ион-ных и водородных связей.

Типы связей, возникающих между радикалами аминокислот при формировании третичной структуры белка. 1 — ионные связи; 2 — водородные связи; 3 — гидро-фобные связи; 4 — дисульфидные связи.

Ионные связи (электростатическое притяжение)могут возникать между от-рицательно заряженными (анионными) карбоксильными группами радикалов аспарагиновой и глутаминовой кислот и по-ложительно заряженными (катионными) группами радикалов лизина, аргинина или гистидина.

Водородные связи возникают между гидро-фильными незаряженными группами (таки-ми как -ОН, -CONH 2 , SH-группы) и любы-ми другими гидрофильными группами. Третичную структуру некоторых белков ста-билизируют дисульфидные связи, образующие-ся за счёт взаимодействия SH-групп двух остатков цистеина. Эти два остатка цистеина могут находиться далеко друг от друга в линейной первичной структуре белка, но при формиро-вании третичной структуры они сближаются и образуют прочное ковалентное связывание ра-дикалов.

Большинство внутриклеточных белков лише-но дисульфидных связей. Однако такие связи распространены в белках, секретируемых клет-кой во внеклеточное пространство. Полагают, что эти ковалентные связи стабилизируют кон-формацию белков вне клетки и предотвращают их денатурацию. К таким белкам относят гор-мон инсулин и иммуноглобулины.

Четвертичная структура белков. Многие белки содержат в своём составе толь-ко одну полипептидную цепь. Такие белки на-зывают мономерами. К мономерным относят и белки, состоящие из нескольких цепей, но соединённых ковалентно, например дисульфидными связями (поэтому инсулин следует рассматривать как мономерный белок).

В то же время существуют белки, состоя-щие из двух и более полипептидных цепей. После формирования трёхмерной структуры каждой полипептидной цепи они объединя-ются с помощью тех же слабых взаимодей-ствий, которые участвовали в образовании третичной структуры: гидрофобных, ионных, водородных.

Способ упаковки двух или более отдельных глобулярных белков в молекуле является четвертичной структурой белка.

Отдельные поли-пептидные цепи в таком белке носят название мономеров, или субъединиц. Белок, содержа-щий в своём составе несколько мономеров, называют олигомерным. Олигомерные глобулярные белки обычно имеют крупные размеры и часто выполняют в ферментативных комплексах регуляторные функции.

Поддержание характерной для белка конформации возможно благодаря возникновению множества слабых связей между различными участками полипептидной цепи. Конформация белка может меняться при изменении химических и физических свойств среды, а также при взаи-модействии белка с другими молекулами. При этом происходит изменение пространственной структуры не только участка, контактирующего с другой молекулой, но и конформации белка в целом.

Конформационные изменения играют огромную роль в функционировании белков в живой клетке. Разрыв большого количества слабых связей в молекуле белка под воздействием органических растворителей, ультразвука, температуры, pH ,и т.д. приводит к разрушению её нативной конформации. Развертывание цепей без разрушения их ковалентных связей называется денатурацией . Такой белок биологически неактивен . При денатурации белков не происходит разрыва пептидных связей, т.е. первичная структура белка не нарушается, однако его функция утрачивается.

Пептидная связь — это прочное соединение между фрагментами двух аминокислот, которое лежит в основе образования линейных структур белков и пептидов. В таких молекулах каждая аминокислота (за исключением концевых) соединяется с предыдущей и последующей.

В зависимости от количества звеньев пептидные связи могут создавать дипептиды (состоят из двух аминокислот), трипептиды (из трех), тетрапептиды, пентапептиды и т. д. Короткие цепочки (от 10 до 50 мономеров) называют олигопептидами, а длинные — полипептидами и белками (мол. масса более 10 тыс. Да).

Характеристика пептидной связи

Пептидная связь — это ковалентное химическое соединение между первым атомом углерода одной аминокислоты и атомом азота другой, возникающее в результате взаимодействия альфа-карбоксильной группы (COOH) с альфа-аминогруппой (NH 2). При этом происходит нуклеофильное замещение OH-гидроксила на аминогруппу, от которой отделяется водород. В итоге образуется одинарная C-N связь и молекула воды.

Так как во время реакции происходит потеря некоторых компонентов (ОН-группы и атома водорода), звенья пептида называют уже не аминокислотами, а аминокислотными остатками. Из-за того, что последние содержат по 2 атома углерода, в пептидной цепи происходит чередование С-С и C-N-связей, которые формируют пептидный остов. По бокам от него располагаются аминокислотные радикалы. Расстояние между атомами углерода и азота варьирует от 0,132 до 0,127 нм, что свидетельствует о неопределенной связи.

Пептидная связь — это очень прочный вид химического взаимодействия. При стандартных биохимических условиях, соответствующих клеточной среде, она не подвергается самостоятельному разрушению.

Для пептидной связи белков и пептидов характерно свойство копланарности, поскольку все атомы, участвующие в ее образовании (C, N, O и H), располагаются в одной плоскости. Это явление объясняется жесткостью (т. е. невозможностью вращения элементов вокруг связи), возникающей в результате резонансной стабилизации. В пределах аминокислотной цепи между плоскостями пептидных групп находятся α-углеродные атомы, связанные с радикалами.

Типы конфигурации

В зависимости от положения альфа-углеродных атомов относительно пептидной связи последняя может иметь 2 конфигурации:

  • "цис" (расположены с одной стороны);
  • "транс" (находятся с разных сторон).

Транс-форма характеризуется большей устойчивостью. Иногда конфигурации характеризуют по расположению радикалов, что не меняет сути, поскольку они связаны с альфа-углеродными атомами.

Явление резонанса

Особенность пептидной связи заключается в том, что она на 40% двойная и может находится в трех формах:

  • Кетольной (0,132 нм) — C-N-связь стабилизирована и полностью одинарна.
  • Переходной или мезомерной - промежуточная форма, имеет частично неопределенный характер.
  • Енольной (0,127 нм) — пептидная связь становится полностью двойной, а соединение С-О — полностью одинарным. При этом кислород приобретает частично отрицательный заряд, а атом водорода — частично положительный.

Такая особенность называется эффектом резонанса и объясняется делокализованностью ковалентной связи между атомом углерода и азота. При этом гибридные sp 2 -орбитали формируют электронное облако, распространяющееся на атом кислорода.

Формирование пептидной связи

Формирование пептидной связи — это типичная реакция поликонденсации, которая термодинамически невыгодна. В естественных условиях равновесие смещается в сторону свободных аминокислот, поэтому для осуществления синтеза требуется катализатор, активирующий или модифицирующий карбоксильную группу для более легкого ухода гидроксильной.

В живой клетке образование пептидной связи происходит в белоксинтезирующем центре, где в роли катализатора выступают специфические ферменты, работающие с затратой энергии макроэргических связей.









2024 © voenkvm.ru.