Водородная энергетика и черная металлургия. Получен металлический водород! Металлизированный водород


Правообладатель иллюстрации Harvard University Image caption Ранга Диас перед установкой алмазного пресса сверхвысокого давления

Ученые из Гарвардского университета сообщили, что им впервые удалось трансформировать водород в металлообразное состояние.

Если это правда - а на этот счет есть сомнения - такое достижение станет венцом продолжавшихся более 80 лет попыток создать самый экзотический материал в природе.

В теории металлический водород может быть использован для создания проводов с нулевым сопротивлением и новых видов ракетного топлива.

Ученые из Гарвардского университета Ранга Диас и Айзек Силвера опубликовали результаты своих экспериментов в журнале Science.

"Впервые в истории планеты Земля создан твердый металлический водород", - сообщил профессор Силвера корреспонденту Би-би-си.

По словам ученых, им пока удалось получить небольшое количество металлического водорода, но со временем, считают они, могут быть найдены способы увеличения производства этого материала.

Метод заключался в сжатии емкости, содержащей небольшое количество молекулярного водорода, между двумя искусственными алмазами, в условиях экстремально высокого давления и сверхнизкой температуры

Под алмазным прессом им удалось достичь давления в 495 гигапаскалей. Это эквивалентно примерно 5 миллионам атмосфер. Алмазные тиски также охлаждались до температуры минус 270 градусов по Цельсию.

Целью эксперимента было добиться настолько тесного сближения атомов водорода, чтобы они образовали кристаллическую решетку и стали обмениваться электронами, что свойственно металлам.

Авторы статьи пишут, что материал в тисках приобрел блестящую поверхность, что свидетельствовало об изменении его атомной структуры. "Далее с ростом давления материал стал черным, и мы полагаем, что это произошло потому, что он стал полупроводником, способным поглощать свет", - говорит профессор Силвера.

"Затем мы еще более увеличили давление, и материал стал блестящим. Это было очень захватывающее зрелище. Отражательная способность его была чрезвычайно высокой, около 90%. Это примерно равно отражающей способности полированного алюминия", - сказал ученый.

Правообладатель иллюстрации SCIENCE PHOTO LIBRARY Image caption У металлов атомы упакованы очень плотно и обмениваются электронами

Однако следует отметить, что известие из Гарварда вызвало немало скептических отзывов среди ученых. Среди них есть специалисты, работающие в той же или схожих областях. Они заявляют, что в опубликованной статье содержится слишком мало данных, которые могли бы подтвердить реальность этого достижения.

"Полная ерунда, - заявил Юджин Грегорьянц из Эдинбургского университета. - Как и все, кто работает с водородом под высоким давлением, я поражен тем, что публикуется в журнале Science".

Впрочем, такое сопротивление является естественным. Если открытие подтвердится, оно станет одним из самых выдающихся достижений прикладной физики за последние десятилетия.

Металлическое состояние водорода было предсказано более 80 лет назад, и с тех пор ученые пытаются получить его на практике. Ценность этого материала связана с его поразительными свойствами.

Например, высказываются предположения о метастабильности металлического водорода. Это означает, что даже при возвращении его в условия нормальной температуры и давления он будет сохранять свои свойства.

Некоторые ученые считают также, что он будет сверхпроводящим металлом даже при комнатной температуре, что приведет к революции в области передачи и хранения электроэнергии.

Правообладатель иллюстрации NASA Image caption Металлический водород мог бы стать уникальным ракетным топливом

Американское аэрокосмическое агентство НАСА также проявляет интерес к материалу. Уже сейчас жидкий водород используется в качестве весьма энергоемкого ракетного топлива, однако его металлическая форма может стать новым видом топлива, способным создавать гигантскую тягу и выводить на орбиту более массимные грузы.

"Я знаю, что многие специалисты в области высоких давлений высказывают свои сомнения, указывая, что высокая отражательная способность может объясняться присутствием загрязнений в составе алмазов, например, окиси алюминия. Однако если им действительно удалось достичь давления почти в 500 гигапаскалей в алмазном прессе, можно ожидать перехода в металлическое состояние водорода", - заявил исследователь Маркус Кнудсон из Национальных лабораторий Сандии.

С ним в целом согласен Джеффри Макмахон из университета штата Вашингтон.

"Что касается микроскопического количества полученного материала - такого рода эксперименты всегда проводятся в небольших алмазных прессах. Тут предстоит решать две проблемы. Во-первых, попытаться получить одновременно большее количество материала; во-вторых, что будет намного сложнее, убедиться, что материал сохраняет свои свойства после снятия давления", - говорит американский ученый.

"Ответ на второй вопрос остается открытым", - считает он.

М

Рис. 1. Диаграмма состояния водорода.

еталлический водород- совокупность фаз высокого давления водорода, обладающих металлическими свойствами. Возможность перехода водорода в металлическую фазу была впервые теоретически рассмотрена Ю. Вигнером и X. Б. Хантингтоном в 1935. B дальнейшем, по мере развития методов электронной теории металлов, уравнения состояния металлической фазы водорода исследовалось теоретически. На рис. 1 приведена фазовая диаграмма, полученная путём синтеза результатов этих расчётов с экспериментальными и теоретическими данными по уравнению состояния молекулярного водорода. При атмосферном давлении и низких температурах водород существует в виде диэлектрического молекулярного кристалла, при повышении давления происходит переход в кристаллическое металлическое состояние. При этом в зависимости от температуры возможны 3 фазы металлического водорода. При температуре T = 0К и давлении Р=100-300 ГПа металлизация сопровождается перестройкой кристаллической структуры, диссоциацией молекул H 2 и металлический кристалл становится атомарным . При T > 10К возможна металлизация с сохранением структуры молекулярного кристалла (пунктир; металлизация такого типа ранее наблюдалась в йоде). При дальнейшем повышении давления или температуры наступает плавление металлической фазы и образуется жидкий атомарный металлический водород.

Кристаллическая решетка твердого металлического водорода формируется ядрами водорода (протонами), находящимися друг от друга существенно ближе боровского радиуса, на расстоянии, сравнимом с длиной волны де Бройля электронов. Таким образом, электроны слабо связаны с протонами и формируют свободный электронный газ так же, как в металлах. Металлический водород обладает высокой удельной теплотой фазового перехода.

Водород в металлической фазе содержится в недрах планет-гигантов Юпитера и Сатурна. Согласно современным моделям, на Юпитере водород в молекулярной фазе присутствует только до глубин порядка 0,22 радиуса планеты . На большей глубине водород в смеси с гелием образует жидкую металлическую фазу (рис. 2).

Важность получения металлического водорода связана с тем, что в нём должен сочетаться ряд уникальных свойств. Во-первых, из-за малой массы атомов аномально велика температура Дебая. Как следствие этого, температура сверхпроводящего перехода в твёрдой фазе при давлении порядка давления металлизации должна превышать 200 К, что значительно выше, чем у всех известных сверхпроводников, т.к. они одного порядка.

Во-вторых, металлический водород может существовать в виде квантовой жидкости. Малая масса атомов водорода приводит к большой величине амплитуды нулевых колебаний атомов, благодаря чему даже при Т= 0К может не происходить кристаллизация. В противоположность известным квантовым жидкостям (3 He и 4 He) плавление кристаллического металлического водорода наступает при возрастании давления. Надёжных расчётных данных о структуре и кривой плавления металлической фазы пока нет. Согласно некоторым расчётам, давление, при к-ром происходит плавление при T = 0 К, порядка давления, необходимого для металлизации, т. е. в этом случае твёрдой фазы H может не быть.

При снятии давления и обратном переходе из металлической фазы в диэлектрическую выделяется энергия ~290 МДж/кг, что в несколько раз выше, чем даёт любой известный вид топлива. Перспективы практического использования металлического водорода в качестве аккумулятора энергии зависят от того, какие условия требуются для осуществления метастабильной металлической фазы при частичном снятии внешнего давления и каково её время жизни. Кроме протия 1 H металлизация может происходить в кристаллах дейтерия 2 H и трития 3 H, с той лишь разницей, что квантовые свойства этих кристаллов выражены слабее, а температура сверхпроводящего перехода в них ниже

Металлический водород - возможно, получен в октябре 2011 г. в Институте химии Макса Планка (Max Planck Institute for Chemistry) в Майнце, Германия. Об этом сообщил журнал Nature Materials. Газообразный водород, сжатый под колоссальным давлением, превратился в вещество со свойствами металла. Об этом заявили сотрудники Института химии в Майнце Михаил Еремец (Mikhail Eremets) и Иван Троян (Ivan Troyan). Как отмечает в связи с достижением немецких ученых портал Science News, “даже НАСА хотело бы иметь такое вещество в качестве ракетного топлива, превышающего по мощности все остальные его виды”.

В комментарии для этого издания Михаил Еремец отметил, что “металлический водород считается в физике высоких давлений своего рода Чашей Грааля”. Для того чтобы испытать способность водорода служить проводником электричества, Еремец и Троян сжали газ при комнатной температуре между двумя алмазными наковальнями. По достижении рекордного давления, которое в два с лишним миллиона раз превышало давление земной атмосферы, водород утратил прозрачность и стал светоотражающим. Его электрическое сопротивление, то есть способность препятствовать прохождению электротока, упало при этом до одной тысячной показателя электросопротивления водорода при низких давлениях.

Столь значительное снижение сопротивления говорит о том, что газ превратился в нечто иное. Для того чтобы показать, что его новое качество может быть металлом, исследователи охладили сжатый водород с комнатной температуры до 30 кельвинов. Сопротивление слегка повысилось, но вещество оставалось электропроводным, и такое поведение вполне допустимо для экзотических металлов.

Несмотря на эти результаты, коллеги авторов не уверены в том, что получен именно водородный металл. Как говорит Уильям Неллис (William Nellis) из Гарвардского университета (Harvard University), пытавшийся в свое время сделать электропроводный водород под воздействием ударных волн, “люди и прежде думали, что сделали металлический водород, но впоследствии оказывалось, что они были неправы”. В ответ на критику Еремец заявляет о планах усовершенствовать эксперимент с высоким давлением, а сам факт оспаривания уже полученных результатов его не удивляет: “Водород привлекает такое внимание физиков, что, естественно, здесь будет много эмоций и, конечно, много претензий”

Изображение алмазных наковален, сжимающих образец молекулярного водорода. При высоком давлении водород переходит в атомарное состояние, как показано справа. Источник: Dias & Silvera, 2017

В 1935 году ученые Юджин Вигнер и Бэлл Хантингтон предсказали возможность перевода водорода в металлическое состояние под воздействием огромного давления - 250 тысяч атмосфер. Немного позже эта точка зрения была пересмотрена, специалисты повысили оценку давления, которое требуется для фазового перехода. Все это время условия перехода считались достижимыми, и ученые пробовали «взять планку», необходимую для перехода водорода в новую фазу. Впервые металлический водород пытались получить в 1970-х. Повторные попытки были предприняты в 1996, 2008 и 2011 году. Ранее сообщалось, что в 1996 году ученым из Германии удалось на долю микросекунды перевести водород в металлическое состояние, хотя не все согласны с этим.

Что касается давления, необходимого для получения металлического водорода, то с развитием квантовой механики и физики вообще стало понятно, что давление должно быть примерно в 20 раз более высоким, чем считалось ранее - не 25 ГПа, а 400 или даже 500 ГПа. Считается, что большие количества металлического водорода присутствуют в ядрах планет-гигантов - Юпитера, Сатурна и крупных внесолнечных планет. Благодаря гравитационному сжатию под газовым слоем должно находиться ядро из металлического водорода. Понятно, что для того, чтобы получить гигантское давление, нужны особые технологии и методы. Добиться желаемого получилось благодаря использованию двух алмазных наковален.

Прочность наковальни была усилена напылением из оксида алюминия, которое оказалось непроницаемым для атомов водорода. Образец водорода был сжат между заостренными концами двух алмазных наковален и при давлении в 495 ГПа ученые добились перехода образца в металлическую фазу.


Источник: Dias & Silvera, 2017

Во всяком случае, образец сначала потемнел, а затем стал отражать свет. При относительно низких показателях давления образец был непрозрачным, ток он не проводил. Эксперимент, проведенный Исааком Силвера (Isaac Silvera) и Ранга Диас (Ranga Dias), был повторным. Впервые добиться перехода водорода в металлическую фазу ученым удалось в середине 2016 года. Но результаты эксперимента нуждались в подтверждении, повторном опыте. Поскольку результаты изначального опыта подтвердились, их можно считать корректными.

К текущему результату ученые шли несколько лет. Только на то, чтобы достичь давления, при котором водород разбивается на индивидуальные атомы, у Силвера и Диас ушло три года. Давление, о котором идет речь - 380 ГПа.

После этого увеличение давления подразумевало необходимость усиления прочности алмазных наковален, которые использовались в эксперименте. Для этого стали напылять тончайшую пленку из оксида алюминия. Без усиления прочности алмазы, которые являются наиболее твердыми минералами на Земле, начинают разрушаться при увеличении давления выше показателя в 400 ГПа.

Учеными была проделана большая работа по изучению алмазов. Причин разрушения могло быть несколько - от дефектов структуры кристалла до влияния самого сжатого до огромной плотности водорода. Для того, чтобы решить первую проблему, специалисты тщательным образом проверяли структур кристалла под микроскопом с большим увеличением. «Когда мы просмотрели на алмаз под микроскопом, мы обнаружили дефекты, которые делают этот минерал уязвимым к внешним факторам», - заявил Силвера. Вторая проблема была решена при помощи напыления, противодействующего утечке атомов и молекул водорода.

Пока что сложно сказать , какую форму металла получили англичане - твердую или жидкую. Сами они затрудняются сказать, хотя считают, что водород перешел в фазу жидкого металла, поскольку это предсказано расчетами. В чем они уверены, так это в том, что образец водорода после сжатия стал в 15 раз более плотным, чем до начала этой процедуры. Температура водорода, который поместили в алмазную наковальню, составила 15К. После перехода элемента в металлическую фазу его нагрели до 83 К, и он сохранил свои металлические свойства. Расчеты показывают, что металлический водород может быть метастабильным, то есть сохранять свои свойства даже после того, как внешние факторы, которые привели к переходу элемента в металлическую фазу, будут ослаблены.

Зачем человеку металлический водород? Считается, что в таком состоянии он проявляет свойства высокотемпературного сверхпроводника. Кроме того, метастабильные соединения металлического водорода могут использоваться в качестве компактного, эффективного и чистого ракетного топлива. Так, при переходе металлического водорода в молекулярную фазу высвобождается примерно в 20 раз больше энергии, чем при сжигании килограмма смеси кислорода и водорода - 216 Мдж/кг.

«Для получения металлического водорода нам понадобилось огромное количество энергии. А если вы снова переведете атомарный металлический водород в молекулярное состояние, вся эта энергия высвободится, так что мы можем получить самое мощное ракетное топливо в мире, что совершит революцию в ракетостроении», - заявили авторы исследования. По их мнению, новое топливо, при условии его использования, позволит легко достичь других планет. Времени на путешествие к ним будет затрачено гораздо меньше, чем в настоящее время, с использованием современных технологий.

Гарвардские ученые Айзек Сильвера и Ранга Диас получили металлический водород ! Отчет об этом событии был представлен 26 января 2017 г. в журнале Science (Ranga P. Dias, Isaac F. Silvera. Observation of the Wigner-Huntington transition to metallic hydrogen).

Суть эксперимента состояла в том, что между алмазами, в условиях невероятно огромных давлении и температуры, был зажат водород. Указывается, что показатели давления в этот момент превышали параметры в центре Земли! К сожалению, зафиксировать металлическое состояние при нормальных температурах и давлении пока не получилось. Однако, ученые собираются продолжать свою серию опытов, при более низком давлении. В случае успеха, металлический водород ждет большое будущее.

Металлический водород: перспективы применения

Ожидается, что это вещество найдет применение как топливо для космических ракет. Эффект от применения металлического водорода в таком качестве по расчетам превысит эффект существующих ракетных топлив более чем в 4 раза, что позволит выводить на орбиту более тяжелые грузы.
Очень перспективно использование металлического водорода в качестве сверхпроводника. Сейчас проводники изготавливаются из разных металлов, но даже в лучшем случае, потери электрического тока при прохождении через проводник достигают 15%. В случае использования металлического водорода потери приблизились бы к нулю. Так что

МЕТАЛЛИЧЕСКИЙ ВОДОРОД - совокупность фаз высокого давления водорода, обладающих металлич. свойствами. Возможность перехода водорода в металлич. фазу была впервые теоретически рассмотрена Ю. Вигнером и X. Б. Хантингтоном в 1935 [I]-^B дальнейшем по мере развития методов электронной теории металлов ур-ние состояния металлич. фаз водорода исследовалось теоретически. На рис. 1 приведена фазовая диаграмма, полученная путём синтеза результатов этих расчётов с эксперим. и теоретич. данными по ур-нию состояния молекулярного водорода . При атм. давлении и низких темп-pax водород существует в виде диэлектрич. молекулярного кристалла, при повышении давления происходит переход в кри-сталлич. металлич. состояние. При этом в зависимости от темп-ры возможны 3 фазы M. в. При темп-ре T = 0 К и давлении r = 300-100 ГПа металлизация сопровождается перестройкой кристаллич. структуры, H 2 и металлич. кристалл становится атомарным . При T > 10 К возможна металлизация с сохранением структуры молекулярного кристалла (пунктир; металлизация такого типа ранее наблюдалась в иоде). При дальнейшем повышении давления или темп-ры наступает металлич. фазы и образуется жидкий атомарный M. в.









2024 © voenkvm.ru.