Особенности географической оболочки земли. Географическая оболочка. Структура географической оболочки


География – эта наука о внутреннем и внешнем строение Земли, изучающая природу всех континентов и океанов. Главным объектом изучения являются различные геосферы и геосистемы.

Введение

Географическая оболочка или ГО – одно из основных понятий географии как науки, введенное в оборот в начале XX века. Оно обозначает оболочку всей Земли, особую природную систему.Географической оболочкой Земли называютцелостную и непрерывную оболочку, состоящую из нескольких частей, которые взаимодействуют друг с другом, проникают друг в друга, постоянно обмениваются друг с другом веществами и энергией.

Рис 1. Географическая оболочка Земли

Есть похожие термины, с узкими значениям, используемые в трудах европейских учёных. Но они не обозначают природною систему, лишь совокупность природных и общественных явлений.

Этапы развития

Географическая оболочка земли пережила ряд определённых этапов в своём развитии и формировании:

  • геологический (добиогенный) – первый этап формирования, начавшийся около 4,5 млрд лет назад (продолжался около 3 млрд лет);
  • биологический – второй этап, начавшийся около 600 млн лет назад;
  • антропогенный (современный) – этап, продолжающийся до сих пор, начавшийся около 40 тысяч лет назад, когда человечество стало оказывать заметное влияние на природу.

Состав географической оболочки Земли

Географическая оболочка – это система планеты, которая, как известно, имеет форму шара, приплюснутого с обеих сторон шапками полюсов, с длинной экватора более 40 т км. ГО имеет определённую структуру. Она состоит из взаимосвязанных друг с другом сред.

ТОП-3 статьи которые читают вместе с этой

Некоторые специалисты разделяют ГО на четыре сферы (которые в свою очередь тоже делятся):

  • атмосферу ;
  • литосферу ;
  • гидросферу ;
  • биосферу .

Строение географической оболочки в любом случае не условно. Она имеет чёткие границы.

Верхние и нижние границы

Во всей структуре географической оболочки и географических сред прослеживается чёткая зональность.

Закон географической зональности предусматривает не только разделение всей оболочки на сферы и среды, но и разделение на природные зоны суши и океанов. Интересно, что такое разделение закономерно повторяется в обоих полушариях.

Зональность обусловлена характером распространения энергии Солнца по широтам и интенсивностью увлажнения (разного в разных полушариях, материках).

Естественно, можно определить верхнюю границу географической оболочки и нижнюю. Верхняя граница расположена на высоте 25 км, а нижняя граница географической оболочки проходит на уровне 6 км под океанами и на уровне 30-50 км на континентах. Хотя, необходимо отметить, что нижняя граница – условна и до сих пор ведутся споры по её установке.

Даже если брать верхнюю границу в районе 25 км, а нижнюю – в районе 50 км, то, по сравнению с общими размерами Земли, получается нечто вроде очень тонкой плёнки, которая покрывает планету и защищает её.

Основные законы и свойства географической оболочки

В этих границах географической оболочки действуют основные законы и свойства, её характеризующие и определяющие.

  • Взаимопроникновение компонентов или внутрикомпонентное перемещение – основное свойство (существуют два вида внутрикомпонентного перемещения веществ – горизонтальное и вертикальное; они не противоречат и не мешают друг другу, хотя в разных структурных частях ГО скорость перемещения компонентов разная).
  • Географическая зональность – основной закон.
  • Ритмичность – повторяемость всех природных явлений (суточная, годовая).
  • Единство всех частей географической оболочки , обусловленное их тесной взаимосвязью.

Характеристики оболочек Земли, входящих в ГО

Атмосфера

Атмосфера важна для сохранения тепла, а значит и жизни на планете. Также она защищает всё живое от ультрафиолета, влияет на почвообразование и климат.

Размер этой оболочки от 8 км до 1 т км (и более) в высоту. В её состав входят:

  • газы (азот, кислород, аргон, углекислый газ, озон, гелий, водород, инертные газы);
  • пыль;
  • водяной пар.

Атмосфера в свою очередь делится на несколько взаимосвязанных слоёв. Их характеристики представлены в таблице.

Все оболочки земли схожи. Например, в них встречаются все типы агрегатных состояний веществ: твёрдые, жидкие, газообразные.

Рис 2. Строение атмосферы

Литосфера

Твердая оболочка земли, земная кора. Имеет несколько слоёв, которые характеризуются разной мощностью, толщиной, плотностью, составом:

  • верхний литосферный слой;
  • сигматическая оболочка;
  • полуметаллическая или рудная оболочка.

Предельная глубина литосферы – 2900 км.

Из чего состоит литосфера? Из твёрдых тел: базальт, магний, кобальт железо и другого.

Гидросфера

Гидросферу составляют все воды Земли (океаны, моря, реки, озера, болота, ледники и даже подземные воды). Располагается она на поверхности Земли и занимает более 70% пространства. Интересно, что существует теория, согласно которой в толще земной коры содержатся большие запасы воды.

Существует два типа воды: солёная и пресная. В результате взаимодействия с атмосферой, при конденсате, соль испаряется, тем самым обеспечивая сушу пресной водой.

Рис 3. Гидросфера Земли (вид океанов из космоса)

Биосфера

Биосфера – это самая «живая» оболочка земли. Она включает в себя всю гидросферу, нижнюю атмосферу, поверхность суши и верхний литосферный слой. Интересно, что живые организмы, заселяющие биосферу, ответственны за накапливание и распределение энергии солнца, за миграционные процессы химических веществ в почве, за газообмен, за окислительно – восстановительные реакции. Можно сказать, что атмосфера существует только благодаря живым организмам.

Рис 4. Составляющие биосферы Земли

Примеры взаимодействия сред (оболочек) Земли

Примеров взаимодействия сред очень много.

  • Во время испарения воды с поверхности рек, озер, морей и океанов в атмосферу попадает вода.
  • Воздух и вода, проникая через почву в глубины литосферы, даёт возможность подниматься растительности.
  • Растительность обеспечивает фотосинтез, обогащая атмосферу кислородом и поглощая углекислый газ.
  • От поверхности земли и океанов нагреваются верхние слои атмосферы, образуя климат, обеспечивающий жизнь.
  • Живые организмы, умирая, формируют почву.
  • Оценка доклада

    Средняя оценка: 4.6 . Всего получено оценок: 494.

Геосферы Земли - более или менее концентрические слои, охватывающие всю Землю и обладающие присущими только им характерными физическими, структурными, физико-химическими, химическими и биологическими свойствами. Геосферы подразделяются на внешние и внутренние. К внешним относятся атмосфера, гидро­сфера, земная кора. К внутренним геосферам относятся мантия и ядро. Земная кора, атмосфера и гидросфера входят в состав биосферы - сложной прерывистой оболочки Земли, являющейся средой оби­тания биоты - живого вещества планеты.

Пространство, в котором взаимопроникают и взаимодействуют литосфера, гидросфера и атмосфера, носит название географичес­кой оболочки . Географическая оболочка представляет собой единую материаль­ную систему, обладающую рядом лишь ей присущих особенностей: в ней лучистая энергия Солнца превращается в тепловую; вода нахо­дится одновременно в трех состояниях - жидком, твердом и газооб­разном; в ней возникли и развиваются растения и животные, формируются почвы, образуются осадочные горные породы, на определен­ном этапе развития появился человек, сформировалось человечес­кое общество, постоянно взаимодействующее с окружающей ее при­родой.

Географическая оболочка развивается и имеет свои закономер­ности в развитии :

1. Целостность - изменение одного ее компонента неизбежно вызывает изменение всех остальных.

2. Круговорот веществ и энергии . Круговорот веществ обеспечивает многократность одних и тех же процессов и явлений при ограниченном объеме исходного вещества.

3. Ритмичность - повторяемость сходных явлений во времени. Существуют ритмы разной продолжительности - суточные, годовые (сезонные), внутривековые.

4. Зональность - закономерное изменение всех компонентов географической оболочки и самой оболочки по направлению от экватора к полюсам. Основные причины зональ­ности - форма Земли и положение ее относительно Солнца, а пред­посылка - падение солнечных лучей на поверхность под углом, по­степенно уменьшающимся в обе стороны от экватора. Дифферен­циация географической оболочки по зональным признакам выра­жается прежде всего в делении на географические пояса и зоны и высотные пояса и зоны.

В 80-е годы XX в. в геологическую науку было введено понятие «геологическая среда », которая, по мнению ряда ученых, представ­ляет собой часть географической оболочки. Она соответствует са­мой верхней части земной коры и выступает как минеральная ос­нова биосферы. Автор этого термина Е.М.Сергеев (1979) и его последователи под геологической средой понимают верхнюю часть литосферы, находящуюся под воздействием инженерно-хозяй­ственной деятельности человека. Верхней границей геологической сре­ды в таком понимании является поверхность рельефа, характер­ная для конкретной территории. Нижняя граница геологической среды зависит от глубины проникновения человека в толщу зем­ной коры в ходе различных видов его деятельности.



Согласно другой точке зрения, понятие «геологическая среда» должно рассматриваться в более широком плане: геологическая среда - это то пространство, где совершаются геологические процессы. Независимо от места своего возникновения (в глубоких недрах или на земной поверхности) эндогенные и экзогенные процессы, взаимодействующие между собой и с внешними геосферами, совершают в огромнейших мас­штабах разнообразные геологические преобразования. При опре­деленных условиях в геологической среде возникает вся масса гор­ных пород и минералов, существуют органические сообщества, действуют геологические силы, преобразующие лик Земли, воз­никают катастрофические, стихийные геологические явления.

6.2 Атмосфера: строение, происхождение, экологические функции

Атмосфера - это газовая оболочка, не имеющая четко выраженной верхней грани­цы и существующая благодаря гравитационному притяжению Земли. Состав у поверхности Земли следующий: азот - 78,1 %, кислород - 20,95 %, аргон - 0,93 % и в незначительных долях процента углекислый газ, водород, ге­лий, неон и другие газы. На высоте 20-25 км расположен слой озона, который предохра­няет живые организмы от коротковолнового (ультрафиолетового) сол­нечного излучения, пагубно воздействующего на живые организмы.

По резкой смене температур в атмосфере выделяют несколько слоев (сфер). Границы между ними носят название пауз (тропопау­за, стратопауза, мезопауза). В самом нижнем слое - тропосфере - темпе­ратура по мере повышения высоты от земной поверхности падает до -55 °С у полюса и -75 °С у экватора. В ней сосредоточено 4/5 всей массы атмосферы. Она богата азотом и кислородом, насыщена па­рами воды и углекислым газом. Здесь протекают важные погодные процессы и образуются облака. Температура в тропосфере падает с высотой в среднем на 6 °С на каждый километр. Тропосфера про­стирается до высоты 12-15 км и отделяется от стратосферы тро­попаузой.

В стратосфере происходит резкое повышение температуры, до­стигающее 0 °С на высоте 55 км, где проходит стратопауза. В стра­тосфере количество азота и кислорода уменьшается, а содержание водорода, гелия и других легких газов увеличивается. В ней располагается озоновый слой.

Следующий слой атмосферы - мезосфера - располагается в интервале 55 -95 км над поверхностью Земли. В ней продолжается падение температуры с увеличением высоты и достигает -70, -80 °С в мезопаузе.

В термосфере температура повышается, достигая на вы­соте 400 км 1200 0С. Ее нередко называют ионосферой, так как мо­лекулы газов ионизированы космическим излучением, т. е. лише­ны верхних электронов и поэтому обладают положительным заря­дом. Как и любой ионизированный газ, воздух в термосфере хоро­шо проводит электричество. К тому же термосфера обладает заме­чательным свойством - отражает радиоволны, что делает возмож­ной дальнюю связь на Земле.

Выше термосферы располагается экзосфера , представляющая собой переходную область между атмосферой и межпланетным пространством. Характерными ее особенностями являются преоб­ладание газов в атомарном состоянии и очень малая плотность. Здесь наиболее легкие газы покидают атмосферу и рассеиваются в космическом пространстве.

Современная атмосфера представляет собой результат длитель­ного эволюционного развития. Она возникла в результате совмест­ных действий геологических факторов и жизнедеятельности орга­низмов. Первичная атмосфера (протоатмосфера ) на самой ранней протопланетной стадии, т.е. старше чем 4,2 млрд. лет, мог­ла состоять из смеси метана, аммиака и углекислого газа. В резуль­тате дегазации мантии и протекающих на земной поверхности ак­тивных процессов выветривания в атмосферу стали поступать пары воды, соединения углерода в виде СО 2 и СО, серы и ее соедине­ний, а также сильных галогенных кислот - НСl, HF, HI и борной кислоты, которые дополнялись находившимися в атмосфере мета­ном, аммиаком, водородом, аргоном и некоторыми другими бла­городными газами. Эта первичная атмосфера была чрезвычайно тонкой.

С течением времени газовый состав первичной атмосферы под влиянием процессов выветривания горных пород, выступавших на земной поверхности, жизнедеятельности цианобактерий и сине-зеленых водорослей, вулканических процессов и действия солнеч­ных лучей стал трансформироваться. Привело это к разложению метана на водород и углекислоту, аммиака - на азот и водород; во вторичной атмосфере стали накапливаться углекислый газ, кото­рый медленно опускался к земной поверхности, и азот. Благодаря жизнедеятельности синезеленых водорослей в процессе фотосин­теза стал вырабатываться кислород, который, однако, в начале в основном расходовался на окисление атмосферных газов, а затем горных пород. При этом аммиак, окислившийся до молекуляр­ного азота, стал интенсивно накапливаться в атмосфере. Метан и оксид углерода окислялись до угле­кислоты. Сера и сероводород окислялись до SO 2 и SO 3 , которые вследствие своей высокой подвижности и легкости быстро удали­лись из атмосферы. Таким образом, атмосфера из восстановитель­ной , какой она была в архее и раннем протерозое, постепенно превращалась в окислительную .

Углекислый газ поступал в атмосферу как вследствие окисле­ния метана, так и в результате дегазации мантии и выветривания горных пород. Значительная часть углекислого газа из атмос­феры растворялась в гидросфере, в которой он использовался гидробионтами для построения своей раковины и биогенным путем превращался в карбонаты. В дальнейшем из них были сформирова­ны мощнейшие толщи хемогенных и органогенных карбонатов.

Кислород в атмосферу поступал из трех источников. В течение длительного времени, начиная с момента возникновения Земли, он выделялся в процессе дегазации мантии и в основном расходо­вался на окислительные процессы. Другим источником кислорода была фотодиссоциация паров воды жестким ультрафиолетовым солнечным излучением. Третьим – процессы фотосинтеза. Стабилизация содержания кисло­рода в атмосфере произошла с того момента, когда растения выш­ли на сушу, - примерно 450 млн. лет назад.

Экологические функции атмосферы заключаются в обеспече­нии условий:

Жизнедеятельности организмов;

Функционирования гидросферы, литосферы и почвы;

Формирования климата;

Возникновения экстремальных явлений и стихийных бедствий;

Развития человечества.

Наряду с экологическими атмосфера обладает и геологиче­скими функциями . Геологическая роль атмосферы за­ключается в том, что ее строение, элементарный состав, состоя­ние и взаимодействие с литосферой, почвенным покровом, гид­росферой, равно как и протекающие в ней процессы, определя­ются скоростями и масштабностью воздействия на поверхност­ную часть литосферы физико-химических факторов, которые оп­ределяют интенсивность и скорость воздействия агентов выветривания, эрозии, транспортировки и аккумуляции осадочного материала. Атмосфера - важный источник веществ для формирования почв, горных пород и полезных ископаемых. Атмосфера не только яв­ляется преобразователем солнечной энергии, но и одновременно служит источником строительного материала (оксида углерода) для живых организмов.

6.3 Гидросфера: строение, происхождение, экологические функции

Под гидросферой подразумевают поверхностную оболочку, состоящую из воды морей и океанов, поверхностных водоемов суши, временных и постоянных водото­ков, твердой воды в виде снега и льда. Наряду с поверхностной существует и подземная гидросфера, к которой относятся грунто­вые и подземные, в том числе артезианские воды.

Океаны и моря покрывают почти 71 % поверхности Земли, а вместе с водными объектами суши, к которым относятся ледни­ки, озера, водохранилища, болота, пруды, водой покрыто почти 3/4 земной поверхности. Высокая теплоемкость воды и зна­чительная потенциальная энергия ее многочисленных фазовых пе­реходов вместе с огромной площадью зеркала воды имеют боль­шое значение для теплового и водного режимов Земли. Гидросфе­ра вместе с атмосферой являются решающим фактором в почво­образовании и формировании растительного покрова Земли и, сле­довательно, обусловливают ландшафтный облик планеты. Ми­ровой океан является глобальным аккумулятором теплоты . Он транс­формирует солнечную энергию, аккумулирует ее, а при необхо­димости, медленно охлаждаясь, отдает часть теплоты в атмосферу. Таким образом, гидросфера играет важнейшую и весьма неодноз­начную роль в терморегуляции планеты .

Экологические функции Мирового океана вытекают из его взаи­модействия с атмосферой и верхней частью литосферы, которое приводит к широкому газообмену, способствует возникновению климата и погодных условий, обусловливает распределение тем­пературы, солености и плотности Мирового океана, вызывает по­верхностную и глубинную гидродинамику. Все это играет ведущую роль в распределении биоты и обусловливает жизнедеятельность организмов, транспортировку и аккумуляцию вещества.

Геологическая роль гидросферы состоит в том, что она как один из главнейших экзогенных факторов преобразует земную поверх­ность, участвует в формировании рельефа, переносит во взвешен­ном и растворенном состоянии вещества и химические соедине­ния и участвует в аккумуляции осадочного материала.

Экологические функции гидросферы обеспечиваются непрерывной циркуляцией воды . Ее перемещение происходит в результате механического движе­ния - потоки воды в реках, течения в толще океана; в результате изменения фазового состава - вода испаряется и попадает в атмо­сферу посредством диффузионного и конвективного потоков. Последние характерны для почв и горных пород. В северных рай­онах наблюдается очень редкий способ передвижения воды путем возгонки. Снег (твердая фаза воды), испаряясь, сразу превращает­ся в пар и попадает в атмосферу. Таким образом, происходит не­прерывный замкнутый процесс циркуляции воды на Земле, име­нуемый круговоротом. Различают малый, большой и входящий в него внутриматериковый круговороты.

Вода, испарившаяся с поверхности океана, большей частью конденсируется и возвращается обратно в виде атмосферных осадков (малый, или океанический, круговорот ) и частично перено­сится воздушными течениями на сушу. Атмосферные осадки, выпавшие на сушу, просачиваясь в почву и зону аэрации, создают запасы почвенной влаги. Проникшие глубже атмосферные осадки образуют подземные воды: грунтовые, пластовые и воды глубоких горизонтов. Часть атмосферных осадков стекает по земной поверх­ности, образуя ручьи и реки, а остальная часть снова испаряется. В конце концов, вода, принесенная воздушными течениями на сушу, снова достигает океана, завершая большой круговорот воды на земном шаре. Из большого круговорота может быть выделен еще местный, или внутриматериковый, круговорот, при котором, вода, испарившаяся с поверхности суши, вновь попадает на сушу в виде атмосферных осадков

Представления о происхождении гидросферы основываются на существовании следующих источников воды: дегазации расплавленной магмы, выбросов воды в виде пара вулканами и «черными» курильщиками. Многое зависело от состава первичного вещества, которое образовало праЗемлю. Среди веществ, сложивших нашу планету, помимо вещества типа метеоритного должно было быть и вещество типа кометного, т.е. содержащее лед, металлы и органику. Другими словами, первичная Земля уже имела достаточное количество воды в виде льда. Чисто кометный вариант происхождения океанов пока не имеет достаточных оснований, так как в существующем океане слишком много следов дегазации недр Земли.

Введение

Заключение

Введение

Географическая оболочка Земли (синонимы: природно-территориальные комплексы, геосистемы, географические ландшафты, эпигеосфера) - сфера взаимопроникновения и взаимодействия литосферы, атмосферы, гидросферы и биосферы. Обладает сложной пространственной дифференциацией. Вертикальная мощность географической оболочки десятки километров. Целостность географической оболочки определяется непрерывным энерго- и массообменом между сушей и атмосферой, Мировым океаном и организмами. Природные процессы в географической оболочке осуществляются за счет лучистой энергии Солнца и внутренней энергии Земли. В пределах географической оболочки возникло и развивается человечество, черпающее из оболочки ресурсы для своего существования и воздействующее на нее.

Географическая оболочка впервые была определена П. И. Броуновым еще в 1910 г. как “наружная оболочка Земли”. Это наиболее сложная часть нашей планеты, где соприкасаются и взаимопроникают атмосфера, гидросфера и литосфера. Только здесь возможно одновременное и устойчивое существование вещества в твердом, жидком и газообразном состояниях. В этой оболочке происходит поглощение, превращение и накопление лучистой энергии Солнца; только в ее пределах стало возможным возникновение и распространение жизни, которая, в свою очередь, явилась мощным фактором дальнейшего преобразования и усложнения эпигеосферы.

Географической оболочке свойственны целостность, обусловленная связями между её компонентами, и неравномерность развития во времени и пространстве.

Неравномерность развития во времени выражается в присущих этой оболочке направленных ритмичных (периодических - суточных, месячных, сезонных, годовых и т.п.) и неритмичных (эпизодических) изменениях. Как следствие этих процессов формируются разновозрастность отдельных участков географической оболочки, унаследованность хода природных процессов, сохранение реликтовых черт в существующих ландшафтах. Знание основных закономерностей развития географической оболочки позволяет во многих случаях прогнозировать природные процессы.

Учение о географических системах (геосистемах) является одним из главных фундаментальных достижений географической науки. Оно по-прежнему активно продолжает разрабатываться и обсуждаться. Поскольку это учение имеет не только глубокий теоретический смысл в качестве ключевого базиса для целенаправленного накопления и систематизации фактического материала с целью получения нового знания. Велика и его практическая значимость, так как именно такой системный подход к рассмотрению инфраструктуры географических объектов лежит в основе географического районирования территорий, без которого невозможно выявлять и решать ни локально, а тем более глобально, какие-либо проблемы, касающиеся в той или иной мере взаимодействия человека, общества и природы: ни экологические, ни природопользования, ни вообще оптимизации взаимоотношений человечества и природной среды.

Целью контрольной работы является рассмотрение географической оболочки в ракурсе современных представлений. Для достижения цели работы следует наметить и решить ряд задач, основными из которых будут являться:

1 рассмотрение географической оболочки как материальной системы;

2 рассмотрение основных закономерностей географической оболочки;

3 определение причин дифференциации географической оболочки;

4 рассмотрение физико-географического районирования и определение системы таксономических единиц в физической географии.

1. Географическая оболочка как материальная система, ее границы, строение и качественные отличия от других земных оболочек

По С.В. Калеснику1, географическая оболочка «не просто физическая или математическая поверхность, а сложный комплекс, возникший и развивающийся под действием взаимосвязанных и взаимопроникающих друг в друга процессов, которые развёртываются на суше, в атмосфере, водах и органическом мире».

Давая определение географической оболочке, С.В. Калесник подчеркнул: 1) её комплексность, 2) многокомпонентность - природная оболочка состоит из частей - земной коры, образующей формы рельефа, вод, атмосферы, почв, живых организмов (бактерии, растения, животные, человек); 3) объёмность. «Оболочка» - понятие трёхмерное.

Следует иметь в виду, что для географической оболочки характерен ряд специфических особенностей. Она отличается прежде всего большим разнообразием вещественного состава и видов энергии, характерных для всех компонентных оболочек - литосферы, атмосферы, гидросферы и биосферы. Через общие (глобальные) круговороты вещества и энергии они объединены в целостную материальную систему. Познать закономерности развития этой единой системы - одна из важнейших задач современной географической науки.

Географическая оболочка – это область взаимодействия внутрипланетарных (эндогенных) и внешних (экзогенных) космических процессов, которые осуществляются при активном участии органического вещества2.

Динамика географической оболочки всецело зависит от энергетики земных недр в зоне внешнего ядра и астеносферы и от энергетики Солнца. Определенную роль играют также приливные взаимодействия системы Земля – Луна.

Проекция внутрипланетарных процессов на земную поверхность и последующее взаимодействие их с солнечным излучением в конечном счете отражается в формировании главных компонентов географической оболочки верхов земной коры, рельефа, гидросферы, атмосферы и биосферы. Современное состояние географической оболочки – результат ее длительной эволюции, начавшейся с возникновения планеты Земля.

Ученые выделяют три этапа развития географической оболочки: первый, самый продолжительный (около 3 млрд. лет)3, характеризовался существованием простейших организмов; второй этап продолжался около 600 млн. лет и ознаменовался появлением высших форм живых организмов; третий этап - современный. Он начался около 40 тыс. лет назад. Его особенность в том, что человек все активнее начинает влиять на развитие географической оболочки, причем, к сожалению, негативно (разрушение озонового слоя и др.).

Географическая оболочкахарактеризуется сложным составом и строением.Основные вещественные компоненты географической оболочки - это слагающие земную кору горные породы (с их формой - рельефом), воздушные массы, водные скопления, почвенный покров и биоценозы; в полярных широтах и высокогорьях существенна роль скоплений льда. Основные энергетические компоненты - гравитационная энергия, внутреннее тепло планеты, лучистая энергия Солнца и энергия космических лучей. При всей ограниченности набора компонентов сочетания их могут быть весьма многообразными; это зависит и от числа входящих в сочетание слагаемых и от их внутренних вариаций (поскольку каждый компонент - это тоже очень сложная природная совокупность), а главное - от характера их взаимодействия и взаимосвязей, т. е. от географической структуры.

А.А. Григорьев проводил верхний предел географической оболочки (ГО) на высоте 20-26 км над уровнем моря, в стратосфере, ниже слоя максимальной концентрации озона. Ультрафиолетовая радиация, губительная для живого, перехватывается озоновым экраном.

Атмосферный озон образуется в основном выше 25 км. В более низкие слои он поступает благодаря турбулентному перемешиванию воздуха и вертикальных движений воздушных масс. Плотность O3мала вблизи земной поверхности и в тропосфере. Его максимум наблюдается на высотах 20-26 км. Общее содержание озона X в вертикальном столбе воздуха колеблется от 1 до 6 мм, если его привести к нормальному давлению (1013, 2мбар) при t = 0oC. Величину X называют приведённой толщиной слоя озона илиобщим количеством озона.

Ниже границы озонового экрана наблюдается движение воздуха, обусловленное взаимодействием атмосферы с сушей и океаном. Нижняя граница географической оболочки, по Григорьеву, проходит там, где прекращают действовать тектонические силы, то есть на глубине 100-120 км от поверхности литосферы, по верхней части подкорового слоя, который влияет в сильной степени на формирование рельефа.

С.В. Калесник помещает верхнюю границу Г.О. так же, как и А.А. Григорьев, на уровне озонового экрана, а нижнюю - на уровне залегания очагов обычных землетрясений, то есть на глубине не свыше 40-45 км и не менее 15-20 км. Эта глубина - так называемая зона гипергенеза (греч. гипер- над, сверху, гeнезис- происхождение). Это зона осадочных пород, возникающих в процессе выветривания, изменения магматических и метаморфических пород, имеющих первичное происхождение.

От этих представлений о границах ГО отличаются взгляды Д.Л.Арманда. Д.Л.Арманд в состав географической сферы включает тропосферу, гидросферу и всю земную кору (силикатную сферу геохимиков), находящуюся под океанами на глубине 8-18 км и под высокими горами на глубине 49-77 км. Кроме собственно географической сферы, Д.Л.Арманд предлагает различать «Большую Географическую Сферу», включая в неё стратосферу, простирающуюся на высоту до 80 км над океаном, и эклогитовуюсферуили симу, то есть всю толщину литосферы, с нижним горизонтом которой (700-1000 км) связаны глубокофокусные землетрясения.

Очевидно, с взглядами Д.Л. Арманда согласиться нельзя. Такое толкование ГО не отвечает содержанию этого понятия. Трудно видеть в этом конгломерате сфер - от стратосферы до эклогитовой сферы - единый комплекс, новую систему со своими особыми, индивидуальными качествами. Предмет физической географии становится расплывчатым, лишённым конкретного содержания, а сама физическая география, как наука, теряет грани, сливаясь с другими науками о Земле.

Качественные отличия географической оболочки от других оболочек Земли: географическая оболочка формируется под действием как земных, так и космических процессов; исключительно богата разными видами свободной энергии; вещество присутствует во всех агрегатных состояниях; чрезвычайно разнообразна степень агрегированности вещества - от свободных элементарных частиц через атомы, ионы, молекулы до химических соединений и сложнейших биологических тел; концентрация тепла, притекающего от Солнца; наличие человеческого общества.

PAGE_BREAK--

2. Круговорот вещества и энергии в географической оболочке

За счёт противоречивого взаимодействия компонентов ГО возникает множественность систем. Например, выпадение атмосферных осадков - процесс климатический, сток выпавших осадков - гидрологический процесс, транспирация влаги растениями - биологический процесс. В этом примере явно проявляется переход одних процессов в другие. А всё вместе это - пример большого круговорота воды в природе. Географическая оболочка, её единство, целостность существует благодаря чрезвычайно напряжённому круговороту веществ и связанной с ним энергии. Круговороты можно рассматривать как чрезвычайно разнообразные формы взаимодействия компонентов (атмосфера - вулканизм). Эффективность круговоротов в природе колоссальна, так как они обеспечивают многократность одних и тех же процессов и явлений, высокую суммарную эффективность при ограниченном объёме исходного вещества, участвующего в этих процессах. Примеры: большой и малый круговорот воды; циркуляция атмосферы; морские течения; круговороты горных пород; биологические круговороты.

По степени сложности круговороты различны: одни сводятся преимущественно к кругообразным механическим перемещениям, другие сопровождаются сменой агрегатного состояния вещества, третьи сопровождаются химической трансформацией.

Оценивая круговорот по его исходному и конечному звену, видим, что вещество, вступившее в круговорот, испытывает нередко перестройку в промежуточных звеньях. Поэтому представление о круговороте входит в понятие взаимообмена вещества и энергии.

Все круговороты не являются круговоротами в точном смысле слова. Они не вполне замкнуты, и конечная стадия круговорота вовсе не тождественна его начальной стадии.

За счёт поглощения солнечной энергии зелёное растение осуществляет ассимиляцию молекул углекислого газа и воды. В результате такой ассимиляции образуется органическое вещество и одновременно выделяется свободный кислород.

Разрыв между конечной и начальной стадиями круговорота образует вектор направленного изменения, то есть развития.

Основой всех круговоротов в природе является миграция и перераспределение химических элементов. Способность элементов к миграции зависит от их подвижности.

Известен порядок воздушной миграции: водород > кислород > углерод > азот. Он показывает, как быстро атомы элементов могут вступать в химические соединения. Исключительно активен O2, поэтому от него зависит миграция большинства других элементов.

Степень подвижности водных мигрантов не всегда объясняется их собственными свойствами. Существенны и другие причины. Ослабляет миграционную способность элементов поглощение их организмами в ходе биогенной аккумуляции, поглощение почвенными коллоидами, то есть процессы адсорбции (лат. - поглощение) и осаждения. Усиливают миграционную способность процессы минерализации органических соединений, растворение и десорбция (процесс, обратный адсорбции).

3. Основные закономерности географической оболочки: единство и целостность системы, ритмичность явлений, зональность, азональность

Закон, как писал В.И.Ленин, есть отношение между сущностями. Сущность географических явлений имеет иную природу, чем сущность, например, социальных или химических объектов, поэтому отношения между географическими объектами выступают как специфические законы географической формы движения.

Географическая форма движения есть специфическое взаимодействие между атмосферой, гидросферой, литосферой, биосферой, на основе которого образуется и существует всё многообразие природных комплексов.

Так, целостность географической оболочки - важнейшая закономерность, на знании которой основывается теория и практика современного рационального природопользования. Учет этой закономерности позволяет предвидеть возможные изменения в природе Земли (изменение одного из компонентов географической оболочки обязательно вызовет изменение других); дать географический прогноз возможных результатов воздействия человека на природу; осуществить географическую экспертизу различных проектов, связанных с хозяйственным использованием тех или иных территорий.

Географической оболочке присуща и другая характерная закономерность - ритмичность развития , т.е. повторяемость во времени тех или иных явлений. В природе Земли выявлены ритмы разной продолжительности - суточный и годовой, внутривековые и сверхвековые ритмы. Суточная ритмика, как известно, обусловлена вращением Земли вокруг своей оси. Суточный ритм проявляется в изменениях температуры, давления и влажности воздуха, облачности, силы ветра; в явлениях приливов и отливов в морях и океанах, циркуляции бризов, процессах фотосинтеза у растений, суточных биоритмах животных и человека.

Годовая ритмика - результат движения Земли по орбите вокруг Солнца. Это смена времен года, изменения в интенсивности почвообразования и разрушения горных пород, сезонные особенности в развитии растительности и хозяйственной деятельности человека. Интересно, что разные ландшафты планеты обладают различной суточной и годовой ритмикой. Так, годовая ритмика лучше всего выражена в умеренных широтах и очень слабо - в экваториальном поясе.

Большой практический интерес представляет изучение и более продолжительных ритмов: 11-12 лет, 22-23 года, 80-90 лет, 1850 лет и более длительных но, к сожалению, они пока еще менее изучены, чем суточные и годовые ритмы.

Характерной чертой дифференциации (пространственной неоднородности, разделения) ГО является зональность (форма пространственной закономерности расположения), то есть закономерное изменение всех географических компонентов и комплексов по широте, от экватора к полюсам. Основные причины зональности - шарообразность Земли, положение Земли относительно Солнца, - падение солнечных лучей на земную поверхность под углом, постепенно уменьшающиеся в обе стороны от экватора.

Пояса (высшие ступени широтного физико-географического деления) разделяются на радиационные или солнечного освещения и тепловые или климатические, географические. Радиационный пояс определяется количеством поступающей солнечной радиации, закономерно убывающим от низких к высоким широтам.

Для формирования тепловых (географических) поясов имеют значение не только количество поступающей солнечной радиации, но и свойства атмосферы (поглощение, отражение, расселение лучистой энергии), альбедо зелёной поверхности перенос тепла морскими и воздушными течениями. Поэтому границы тепловых поясов нельзя совместить с параллелями. - 13 климатических или тепловых поясов.

Географическая зона - это совокупность ландшафтов одного географического пояса.

Границы же географических зонопределяются соотношением тепла и влаги. Это соотношение зависит от количества радиации, а также от количества влаги в виде осадков и стока, которые лишь частично привязаны к широте. Вот почему зоны не образуют непрерывных полос, и простирание их вдоль параллелей скорее частный случай, чем общий закон.

Открытие В.В. Докучаевым(«Русский чернозём, 1883 г.) географических зон как целостных природных комплексов было одним из крупнейших событий в истории географической науки. После этого в течение полувека географы занимались конкретизацией этого закона: уточняли границы, выделяли секторы (то есть, отклонения границ от теоретических) и т. п.

В географической оболочке, кроме зональных процессов, связанных с распределением солнечного тепла на земной поверхности, большое значение имеют процессы азональные, зависящие от процессов, происходящих внутри Земли4. Их источниками являются: энергия радиоактивного распада, главным образом урана и тория, энергия гравитационной дифференциации, вырабатываемая в процессе сокращения радиуса Земли при вращении Земли, энергия приливного трения, энергия межатомных связей минералов.

Азональные влияния на географическую оболочку проявляются в формировании высотных географических поясов, в горах, нарушающих широтную географическую зональность, и в разделении географических поясов на секторы, а зон - на провинции.

Формирование секторности и провинциальности в ландшафтах объясняется тремя причинами: а) распределением суши и моря, б) рельефом зелёной поверхности, в) составом горных пород.

Распределение суши и моря на азональность процессов ГО сказывается через степень континентальности климата. Существует немало методов для определения степени континентальности климата. Большинство учёных определяют данную степень через годовую амплитуду среднемесячных температур воздуха.

Влияние рельефа, неровностей земной поверхности и состава горных пород на ландшафты общеизвестны и понятны: на одной и той же широте в горах и на равнине леса и степи; известны моренные и карстовые ландшафты, связанные в происхождении с составом горных пород.

4. Дифференциация географической оболочки. Географические пояса и природные зоны

Наиболее крупные зональные подразделения географической оболочки - географические пояса . Они протягиваются, как правило, в широтном направлении и, по существу, совпадают с климатическими поясами. Географические пояса отличаются друг от друга температурными характеристиками, а также общими особенностями циркуляции атмосферы. На суше выделяются следующие географические пояса:

экваториальный - общий для северного и южного полушарий;

субэкваториальный, тропический, субтропический и умеренный - в каждом полушарии;

субантарктический и антарктический пояса - в южном полушарии.

Аналогичные по названиям пояса выявлены и в Мировом океане. Поясность (зональность) в океане находит свое отражение в изменении от экватора к полюсам свойств поверхностных вод (температуры, солености, прозрачности, интенсивности волнения и других), а также в изменении состава флоры и фауны.

Внутри географических поясов по соотношению тепла и влаги выделяются природные зоны . Названия зон даны по преобладающему в них типу растительности. Например, в субарктическом поясе это зоны тундры и лесотундры; в умеренном - зоны лесов (тайга, смешанные хвойно-широколиственные и широколиственные леса), зоны лесостепей и степей, полупустынь и пустынь.

Продолжение
--PAGE_BREAK--

Следует иметь в виду, что в связи с неоднородностью рельефа и земной поверхности, близостью и удаленностью от океана (а следовательно, и неоднородностью увлажнения) природные зоны различных регионов материков не всегда имеют широтное простирание. Иногда они имеют почти меридиональное направление. Неоднородны и природные зоны, протягивающиеся широтно через весь материк. Обычно они подразделяются на три отрезка, соответствующих центральному внутриконтинентальному и двум приокеаническим секторам. Широтная, или горизонтальная, зональность лучше всего выражена на больших по площади равнинах.

Благодаря разнообразию условий, создаваемых рельефом, водами, климатом и жизнью, ландшафтная сфера пространственно дифференцирована сильнее, чем во внешних и внутренних геосферах (кроме верхней части земной коры), где материя в горизонтальных направлениях отличается относительным однообразием.

Неравномерность развития географической оболочки в пространстве выражается прежде всего в проявлениях горизонтальной зональности и высотной поясности.Местные особенности (условия экспозиции, барьерная роль хребтов, степень удаления от океанов, специфика развития органического мира в том или ином районе З.) усложняют структуру географической оболочки, способствуют образованию азональных, интразональных, провинционных различий и приводят к неповторимости как отдельных регионов, так и их сочетаний.

5. Высотная поясность гор в разных географических поясах

Высотная поясность ландшафтов обусловлена изменением климата с высотой: понижением температуры на 0,6 ° С на каждые 100 м подъема и увеличением количества осадков до определенной высоты (до 2-3 км)5. Смена поясов в горах происходит в той же последовательности, что и на равнинах при движении от экватора к полюсам. Однако в горах есть особый пояс субальпийских и альпийских лугов, которого нет на равнинах. Количество высотных поясов зависит от высоты гор и особенностей их географического положения. Чем выше горы и чем ближе они расположены к экватору, тем богаче у них спектр (набор) высотных поясов. Спектр высотных поясов в горах определяется также местоположением горной системы относительно океана. В горах, находящихся вблизи океана, преобладает набор из лесных поясов; во внутриконтинентальных (аридных) секторах материков характерны безлесые высотные пояса.

6. Физико-географическое районирование как одна из важнейших проблем физической географии. Система таксономических единиц в физической географии

Районирование как универсальный метод упорядочения и систематизации территориальных систем широко используется в географических науках. Объектами физико-географического, иначе ландшафтного, районирование являются конкретные (индивидуальные) геосистемы регионального уровня, или физико-географические регионы. Физико-географический регион - это сложная система, обладающая территориальной целостностью и внутренним единством, которое обусловлено общностью географического положения и исторического развития, единством географических процессов и сопряженностью составных частей, т.е. подчиненных геосистем низшего ранга.

Физико-географические регионы представляют собой целостные территориальные массивы, выражаемые на карте одним контуром и имеющие собственные названия; при классификации же в одну группу (тип, класс, вид) могут войти ландшафты территориально разобщенные, на карте они чаще представлены разорванными контурами.

Каждый физико-географический регион представляет звено сложной иерархической системы, являясь структурной единицей регионов высших рангов и интеграцией геосистем более низких рангов.

Физико-географическое районирование имеет существенное практическое значение и находит применение для комплексного учета и оценки природных ресурсов, при разработке планов территориального развития хозяйства, крупных мелиоративных проектов и т.д.

В руководствах по районированию основное внимание уделяется системе таксономических единиц. Этой системе предпосылается перечень принципов, которые должны служить основой для диагностики регионов. Среди них чаще всего упоминаются принципы объективности, территориальной целостности, комплексности, однородности, генетического единства, сочетания зональных и азональных факторов.

Формирование физико-географических регионов - длительный процесс. Каждый регион - продукт исторического (палеогеографического) развития, в ходе которого происходило взаимодействие различных районообразующих факторов и могло неоднократно изменяться их соотношение.

Можно говорить о двух первичных и независимых рядах физико-географических регионов - зональном и азональном. Логическая соподчиненность между региональными таксонами разных рангов существует отдельно внутри каждого ряда.

Все известные схемы физико-географического районирования построены по двухрядному принципу, ибо зональные и азональные единицы выделяются независимо.

Можно различать три основных уровня районирования в зависимости от его детальности, т.е. от завершающей (нижней) ступени:

1) первый уровень включает страны, зоны и замыкается на производных зонах в узком смысле слова;

2) второй уровень включает кроме перечисленных ступеней области, подзоны и производные от них единицы, завершаясь подпровинцией;

3) третий уровень охватывает всю систему подразделений до ландшафта включительно.

Заключение

Таким образом, под географической оболочкой следует понимать непрерывную оболочку Земли, которая включает нижние слои атмосферы, верхнюю часть литосферы, всю гидросферу и биосферу, находящиеся в соприкосновении, взаимопроникновении и взаимодействии. Еще раз подчеркнем, что географическая оболочка - это планетарный (самый крупный) природный комплекс.

Многие ученые считают, что толщина географической оболочки составляет в среднем 55 км. По сравнению с размера-ми Земли это тонкая пленка.

Географическая оболочка обладает присущими только ей важнейшими свойствами:

а) в ней есть жизнь (живые организмы);

б) вещества находятся в ней в твердом, жидком и газообразном состоянии;

в) в ней существует и развивается человеческое общество;

г) ей присущи общие закономерности развития.

Целостность географической оболочки - это взаимосвязь и взаимозависимость ее компонентов. Доказательством целостности служит простой факт - изменение хотя бы одного компонента неизбежно влечет за собой изменение других.

Все компоненты географической оболочки связаны в единое целое посредством круговорота веществ и энергии, благодаря которому осуществляется и обмен между оболочками (сферами). Ритмичность характерна для живой и неживой природы. Человечество, возможно, не до конца изучило ритмику географической оболочки.

Вопросы, поднятые во введении, рассмотрены, цель работы достигнута.

Список литературы

Григорьев А. А. Опыт аналитической характеристики состава и строения физико-географической оболочки земного шара - М.: 1997 - 687с.

Калесник С. В. Общие географические закономерности Земли. - М.: 1970- 485с.

Пармузин Ю.П., Карпов Г.В. Словарь по физической географии. - М.: Просвещение, 2003 - 367 с.

Рябчиков А. М. Структура и динамика геосферы, её естественное развитие и изменение человеком. -М.: 2001.- 564с.

Физическая география материков и океанов: Учебное пособие / Под ред. А.М. Рябчикова. - М.: Высшая школа, 2002.- 592 с.

Географическая оболочка – это цельная оболочка Земли, где ее составляющие (верхняя часть литосферы, нижняя часть атмосферы, гидросфера и биосфера) тесно взаимодействуют, обмениваясь веществом и энергией. Географическая оболочка имеет сложный состав и строение. Ее изучением занимается физическая география .

Верхней границей географической оболочки является стратопауза, до нее проявляется тепловое влияние земной поверхности на атмосферные процессы. Нижней границей географической оболочки считают подножие стратисферы в литосфере, то есть верхнюю зону земной коры. Так, географическая оболочка включает всю гидросферу, всю биосферу, нижнюю часть атмосферы и верхнюю литосферы. Наибольшая толщина географической оболочки по вертикали достигает 40 км.

Географическая оболочка Земли образуется под влиянием земных и космических процессов. В ней заключены различные виды свободной энергии. Вещество имеется в любых агрегатных состояниях, причем степень агрегированности вещества разнообразна – от свободных элементарных частиц до химических веществ и сложных биологических организмов. Притекающее от Солнца тепло аккумулируется, а все природные процессы в географической оболочке происходят за счет лучистой энергии Солнца и внутренней энергии нашей планеты. В данной оболочке развивается человеческое общество, черпающее ресурсы для своей жизнедеятельности из географической оболочки и воздействующее на нее как положительно, так и отрицательно.

Элементы, свойства

Главные вещественные элементы географической оболочки – горные породы, составляющие земную кору, воздушные и водные массы, почвы и биоценозы. Ледяные массивы играют большую роль в северных широтах и высокогорьях. Данные составляющие оболочку элементы образуют различные комбинации. Форма той или иной комбинации определяется количеством входящих компонентов и их внутренними видоизменениями, а также характером их взаимовлияний.

Географическая оболочка имеет ряд важных свойств. Целостность ее обеспечивается, благодаря постоянному обмену веществ и энергии между ее составляющими. А взаимодействие всех компонентов связывает их в одну материальную систему, в которой изменение любого элемента провоцирует изменение и остальных звеньев.

В географической оболочке непрерывно осуществляется круговорот веществ. При этом одни и те же явления и процессы многократно повторяются. Их общая эффективность держится на высоком уровне, несмотря на ограниченное количество исходных веществ. Все эти процессы отличаются по сложности и структруре. Некоторые являются механическими явлениями, например, морские течения, ветра, другие сопровождаются переходом веществ из одного агрегатного состояния в другое, к примеру, круговорот воды в природе, может происходить биологическая трансформация веществ, как при биологическом круговороте.

Следует отметить повторяемость различных процессов в географической оболочке во времени, то есть определенную ритмику. В ее основе лежат астрономические и геологические причины. Различают суточную ритмику (день-ночь), годовую (времена года), внутривековую (циклы в 25-50 лет), сверхвековую, геологическую (каледонский, альпийский, герцинский циклы длительностью по 200-230 млн лет).

Географическую оболочку можно рассматривать как целостную непрерывно развивающуюся систему под действием экзогенных и эндогенных факторов. Вследствие этого постоянного развития происходит территориальная дифференциация поверхности суши, морского и океанического дна (геокомплексы, ландшафты), выражена полярная асимметрия, проявляющаяся существенными отличиями природы географической оболочки в южном и северном полушариях.

Похожие материалы:

Выявление важнейших качественных свойств и особенностей природы географической оболочки — непременное условие познания основных закономерностей ее дифференциации.

I Как уже отмечалось, географическая оболочка — сложная, исторически сложившаяся и непрерывно развивающаяся, целостная и качественно своеобразная материальная система. Ей присущи следующие важнейшие особенности:

1) — ее качественное своеобразие, которое заключается в том, что только в ее пределах вещество находится одновременно в трех физических состояниях: твердом, жидком и газообразном. В связи с чем географическая оболочка состоит из пяти качественно разных, взаимопроникающих и взаимодействующих геосфер: литосферы, гидросферы, атмосферы, биосферы и палеосферы. В пределах каждой из них выделяется несколько компонентов. Например, в пределах литосферы выделяются в качестве самостоятельных компонентов разнообразные горные породы, в биосфере — растения и животные и т. д.

2) — тесное взаимодействие и взаимообусловленность всех ее геосфер и частей, определяющие ее развитие. Опыт человечества показал, что географическая оболочка не конгломерат различных, не зависящих друг от друга предметов и явлений, а сложный комплекс, природная система, представляющая собой единое целое. Достаточно изменить лишь одно звено этой целостной системы, чтобы вызвать изменения во всех других ее частях и в комплексе в целом. Человеческое общество, преобразуя природу с целью более рационального использования природных ресурсов, должно учитывать все возможные последствия воздействия на отдельные звенья этой системы и не допускать нежелательных изменений в нем. Так, выжигая леса на склонах гор Кубы и получая в золе от пожара удобрение всего на одно поколение очень доходных кофейных деревьев, испанским плантаторам не было дела до того, что тропические ливни впоследствии смывали уже беззащитный верхний слой почвы, оставляя после себя лишь обнаженные скалы (Юренков, 1982). Во всех случаях, когда речь идет о воздействии на какие-то звенья природных систем в больших масштабах, должен побеждать разумный подход. Например, выдвигавшийся в 80-х гг. 20 в. и не утвержденный Госпланом бывшего СССР, проект создания Нижнеобского гидрокомплекса, предусматривал получение очень дешевой и в большом количестве столь необходимой Сибири энергии. Но в результате сооружения в низовьях Оби плотины образовалось бы обширное море в виде зоны подтопления, которое около девяти месяцев в году было бы сковано льдом. Это в свою очередь, существенно изменило бы климат сопредельных территорий, нежелательно отразилось бы на сельском хозяйстве, промышленности, здоровье людей. Затопленными оказались бы полезные ископаемые (нефть, газ и др.), миллионы гектаров сельскохозяйственных угодий, леса, который (кроме всего прочего) является важнейшим продуцентом кислорода. Готовые дипломные роботы быстро и недорого, всё это можно найти на сайте zaochnik.ru. Также здесь вы сможете заказать отчет по практике, реферат, семестровую работу, диссертация.

Одним из самых главных проявлений взаимодействия всех геосфер и компонентов географической оболочки является постоянный обмен веществом и энергией, поэтому все стороны и компоненты географической оболочки, слагаясь в основном из определенного, только им свойственного сочетания химических веществ, как правило, включают в себя и некоторое количество веществ, составляющих основную массу остальных компонентов или являющихся производными этой основной массы (А.А. Григорьев, 1952, 1966). Взаимодействие всех сторон, компонентов и частей географической оболочки, их внутренние противоречия — основная причина ее постоянного развития, усложнения, перехода из одной стадии в другую.

3) — эта целостная материальная система не изолирована от внешнего мира, она находится в постоянном взаимодействии с ним. Внешним миром для географической оболочки является, с одной стороны, Космос, с другой — внутренние сферы земного шара (мантия и земное ядро).

Взаимодействие с Космосом проявляется прежде всего в проникновении и трансформации солнечной энергии в пределы географической оболочки, а также в теплоизлучении со стороны последней. Основным источником тепла для географической оболочки является солнечная радиация — 351 10 22 Дж/год. Количество тепла, поступающее за счет процессов, происходящих в земных глубинах, невелико — около 79х10 19 Дж/год (Рябчиков, 1972), т. е. в 4400 раз меньше.

Наряду с солнечной и иной космической энергией на Землю непрерывно поступает межзвездное вещество в виде метеоритов, метеорной пыли (до 10 млн. т/год; Юренков, 1982). В то же время наша планета постоянно теряет легкие газы (водород, гелий), которые, поднимаясь в высокие слои атмосферы, улетучиваются в межпланетное пространство. Этот взаимообмен химическими элементами между Землей и Космосом обосновал В. И. Вернадский. Из земной коры в более глубокие сферы Земли мигрируют железо, магний, сера и другие элементы, а из глубоких сфер поступают кремний, кальций, калий, натрий, алюминий, радиоактивные и другие элементы.

Взаимодействие географической оболочки с внутренними сферами Земли проявляется также в сложном энергетическом взаимообмене, обусловливающем так называемые азональные процессы, и в первую очередь — движения земной коры. Противоречивые, единые и неразрывные зональные и азональные процессы обусловливают главнейшую закономерность географической оболочки — ее зонально-провинциальную дифференциацию.

4) — в географической оболочке происходит как возникновение новых форм, так и распад более сложных образовании, т. е. осуществляется один из основных законов природы — закон синтеза и распада и их единства (Гожев, 1963), что способствует постоянному развивитию и усложнению географической оболочки, ее переходу из одной стадии в другую.

Развитие географической оболочки характеризуется ритмичностью и поступательностью, т. е. переходом от "более простого к более сложному; постоянным усложнением ее зональности и провинциальности, структуры ее природных систем.

Развитие географической оболочки и ее частей подчинено «закону гетерохронности развития» (Калесник, 1970), который проявляется в неодновременности изменения природы географической оболочки от места к месту. Например, отмечавшееся в 20-30-е годы ХХ в. в северном полушарии «потепление Арктики» на Земле не было повсеместным, а одновременно с ним в некоторых районах Южного полушария отмечалось похолодание.

Характерной особенностью развития географической оболочки является усиление относительной консервативности природных условий по мере движения от более высоких широт к более низким. В этом же направлении увеличивается и возраст природных зон. Так, наиболее молодой, послеледниковый возраст имеет тундровая зона; в плиоцен-четвертичное время в основном оформилась лесная зона; в плиоцене — лесостепная, в олигоцен—плиоцене — степная и пустынная.

5) — характеризуется наличием органической жизни, с возникновением которой все остальные геосферы (атмосфера, гидросфера, литосфера) подверглись глубоким изменениям.

6) — она является ареной жизни и деятельности человеческого общества. На нынешнем этапе разумный человек — это показатель высшей стадии развития географической оболочки.

7) — ей свойственна региональная дифференциация. Согласно материалистической диалектике, единство мира не исключает его качественного многообразия. Целостная географическая оболочка неоднородна от места к месту, имеет сложное строение. С одной стороны, географическая оболочка обладает континуальностью (все ее стороны, компоненты и структурные части связаны и пронизаны потоком вещества и энергии; ей свойственна непрерывность распространения), с другой стороны, ей присуща дискретность (наличие внутри этой непрерывной оболочки природно-территориальных комплексов — ПТК, обладающих относительной целостностью.) Причем, непрерывность проявляется в целом сильнее, чем прерывность, т. е. географическая оболочка представляет собой единое целое, сплошное тело, а ее прерывность условна, так как ПТК являются ее составными частями, между которыми нет никаких пустот или чуждых географической оболочке образований (Арманд Д. и др., 1969).

Качественные различия взаимодействий между сторонами и компонентами географической оболочки в разных ее местах, а вместе с этим и ее региональная дифференциация в первую очередь определяются неодинаковыми соотношениями количественных показателей этих сторон и компонентов природы. Так, даже одинаковое количество выпадающих осадков для разных территорий при различных соотношениях количественных показателей других компонентов природы предопределяет различие в степени увлажненности этих территорий со всеми вытекающими отсюда последствиями. Так, при примерно равном количестве осадков в северных районах территории России и на севере Среднеазиатских равнин (200-300 мм/год), но значительно различных величинах солнечной радиации, разном состоянии атмосферы, неодинаковых температурных условиях в первом случае отмечается недостаток тепла и избыток влаги и формируются тундровые ландшафты, во втором— при обилии тепла и недостатке влаги — формируются полупустынные ландшафты.

Диалектическое единство свойств континуальности и дискретности географической оболочки позволяет выделять среди объектов, изучаемых физической географией, относительно самостоятельные разного ранга природно-территориальные комплексы (ПТК) — сложные географические системы (геосистемы).

Под природно-территориальными комплексами понимаются участки географической оболочки, имеющие естественные границы, качественно отличные от других участков и представляющие целостную и закономерную совокупность предметов и явлений. Порядок величин и степень сложности ПТК весьма разнообразны. Наиболее простую внутреннюю организацию имеют небольшие по площади ПТК (ПТК прируслового вала, склона моренного холма, борта лога и др.). С увеличением ранга степень сложности и площадь ПТК увеличиваются, так как они уже включают в себя системы множества ПТК более низкого ранга. В качестве примера таких ПТК можно отметить Восточноевропейскую провинцию таежной зоны, таежную зону в целом и т. п.

ПТК включают в себя все или большинство основных компонентов природы — литогенную основу, воздух, воду, почву, растительность, животный мир. Они являются структурными элементами географической оболочки.

Некоторые физико-географы (К.В. Пашканг, И.В. Васильева и др., 1973) все природные комплексы подразделяют на полные (именуются природно-территориальными и состоят из всех компонентов природы) и неполные и состоят из одного (одночленные природные комплексы) или нескольких (из двух — двучленные, из трех — трехчленные природные комплексы) компонентов природы. Согласно взглядам этих авторов, «природно-территориальные комплексы являются основным объектом изучения физической географии», а одночленные (фитоценоз, воздушная масса и др.), двучленные (например, биоценоз, состоящий из взаимосвязанных фито- и зооценоза) природные комплексы — предметом исследования соответствующих отраслей естествознания: фитоценозы изучаются геоботаникой, воздушные массы — динамической метеорологией, биоценозы — биоценологией. Такая трактовка вопроса вызывает существенные возражения. Во-первых, необходимо уточнить, что ПТК в целом являются основным объектом изучения не физической географии вообще, а региональной физической географии и ландшафтоведения. Во-вторых, весьма сомнительна правомерность выделения так называемых неполных природных комплексов. Очевидно, что природные образования, состоящие из одного компонента природы, не логично называть природным комплексом, даже одночленным. Скорее всего это часть природного комплекса. Так, скопление грубообломочного материала не представляет собой природного комплекса, даже одночленного. Приводимые же в качестве примеров фитоценоз и биоценоз как «неполные» природные комплексы в природе не существуют. В природе нет растительных сообществ, не находящихся в теснейшей взаимосвязи с остальными компонентами природы — литогенной основой, воздухом, водой, животным миром. В этом одно из проявлений важнейшего закона материалистической диалектики— закона единства организма и условий его жизни. И если геоботаник или биоценолог в силу задач, стоящих перед ним, не стремится вскрыть эти взаимосвязи, это совершенно не значит, что эти взаимосвязи не существуют, и не дает никаких оснований фитоценозы и биоценозы именовать неполными природными комплексами.

Неправомерность отнесения фитоценоза к одночленному природному комплексу очевидна уже потому, что эту же территорию биоценолог может рассматривать как двучленный, а ландшафтовед — как полный природный комплекс, состоящий из всех компонентов природы. Сказанное в равной мере относится и к другим «неполным» комплексам.

Все природные комплексы на данной стадии своего развития являются полными. Это уже вытекает из важнейшей закономерности географической оболочки — взаимодействия и взаимообусловленности всех ее геосфер, компонентов и структурных частей. Нет ни одного компонента географической оболочки, который бы не испытывал воздействия других и не воздействовал бы на них. Это взаимодействие осуществляется посредством обмена веществом и энергией.

Важнейшими признаками, по которым один ПТК отличается от другого, являются: их относительная генетическая разнородность; качественные отличия, которые в первую очередь предопределяются различными количественными характеристиками составляющих их компонентов; отличающаяся закономерная совокупность компонентов и сопряженность структурных частей сравниваемых ПТК.









2024 © voenkvm.ru.